Critical evolution of hot van der Waals droplets

Kondratyev, VN
Lutz, HO
Ayik, S
The dynamical evolution and fragmentation of a hot finite van der Waals system is investigated in a classical molecular dynamics approach. It is demonstrated that, under certain conditions determined mainly by the initial deposited energy, the fragmentation of rare-atom clusters exhibit a critical behavior. This behavior leaves its signatures in the mass distributions and the conditional moments, as well as the scaled factorial moments of the produced fragments. The connection between the observed critical behavior and the second-order liquid-gas phase transition is investigated by employing Fisher's droplet model for the average fragment mass distributions, and performing Campi and intermittency analysis for the correlation and fluctuation properties of the fragment mass distributions. The size dependence of the signatures of critical behavior is discussed. (C) 1997 American Institute of Physics.


Multinucleon transfer in central collisions of U-238+U-238
Ayik, S.; YILMAZ, BÜLENT; YILMAZ TÜZÜN, ÖZGÜL; Umar, A. S.; Turan, Gürsevil (2017-08-14)
Quantal diffusion mechanism of nucleon exchange is studied in the central collisions of U-238 + U-238 in the framework of the stochastic mean-field (SMF) approach. For bombarding energies considered in this work, the dinuclear structure is maintained during the collision. Hence, it is possible to describe nucleon exchange as a diffusion process for mass and charge asymmetry. Quantal neutron and proton diffusion coefficients, including memory effects, are extracted from the SMF approach and the primary fragm...
Noncommutative nonlinear sigma models and integrability
Kürkcüoğlu, Seçkin (American Physical Society (APS), 2008-09-01)
We first review the result that the noncommutative principal chiral model has an infinite tower of conserved currents and discuss the special case of the noncommutative CP1 model in some detail. Next, we focus our attention to a submodel of the CP1 model in the noncommutative spacetime A(theta)(R2+1). By extending a generalized zero-curvature representation to A(theta)(R2+1) we discuss its integrability and construct its infinitely many conserved currents. A supersymmetric principal chiral model with and wi...
BASKAL, S; DERELI, T (IOP Publishing, 1993-04-01)
The variational field equations and the covariantly conserved energy-momentum tensor of a higher-derivative effective Yang-Mills theory are given. A class of static spherically symmetric gauge field configurations that follow from the Wu-Yang ansatz is considered.
Energy preserving integration of bi-Hamiltonian partial differential equations
Karasözen, Bülent (2013-12-01)
The energy preserving average vector field (AVF) integrator is applied to evolutionary partial differential equations (PDEs) in bi-Hamiltonian form with nonconstant Poisson structures. Numerical results for the Korteweg de Vries (KdV) equation and for the Ito type coupled KdV equation confirm the long term preservation of the Hamiltonians and Casimir integrals, which is essential in simulating waves and solitons. Dispersive properties of the AVF integrator are investigated for the linearized equations to ex...
Novel quantum description of time-dependent molecular interactions obeying a generalized non-central potential
Menouar, Salah; Choi, Jeong Ryeol; Sever, Ramazan (2018-04-01)
Quantum features of time-dependent molecular interactions are investigated by introducing a time-varying Hamiltonian that involves a generalized non-central potential. According to the Lewis-Riesenfeld theory, quantum states (wave functions) of such dynamical systems are represented in terms of the eigenstates of the invariant operator. Hence, we have derived the eigenstates of the invariant operator of the system using elegant mathematical manipulations known as the unitary transformation method and the Ni...
Citation Formats
V. Kondratyev, H. Lutz, and S. Ayik, “Critical evolution of hot van der Waals droplets,” JOURNAL OF CHEMICAL PHYSICS, pp. 7766–7776, 1997, Accessed: 00, 2020. [Online]. Available: