Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
An Investigation of the Ground Motion Scaling Procedures for the Nonlinear Seismic Analyses of Concrete Gravity Dams
Date
2019-07-03
Author
Soysal, BERAT FEYZA
Ay, Bekir Özer
Arıcı, Yalın
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
271
views
0
downloads
Cite This
Seismic assessment of gravity dams is generally carried out using time history analyses. Scaling of the motions is commonly used; however, in contrast to buildings, the performance of scaling procedures at predicting the mean and reducing the dispersion in engineering demand parameters (EDPs) is not known. The main goal of this study is to assess the performance of different scaling procedures in predicting seismic demands on dams. The performance regarding the prediction of the damage and the required number of motions for effective analysis was investigated. The results show that techniques commonly used for moment frames should not readily be applied to these structures.
Subject Keywords
Ground motion selection
,
Ground motion scaling
,
Nonlinear analysis
,
Concrete gravity dam
,
Damage level
URI
https://hdl.handle.net/11511/37905
Journal
JOURNAL OF EARTHQUAKE ENGINEERING
DOI
https://doi.org/10.1080/13632469.2017.1342298
Collections
Department of Architecture, Article
Suggestions
OpenMETU
Core
Evaluation of the Ground Motion Scaling Procedures for Concrete Gravity Dams
SOYSAL, BERAT FEYZA; Ay, Bekir Özer; Arıcı, Yalın (Elsevier BV; 2017-09-13)
The seismic safety of dam structures is often evaluated using time history analyses conducted with a limited number of ground motions. The selection and scaling of the ground motions is usually the most effective factor determining the results of the safety assessment. The inherent variability in the ground motion as well as the difficulty of conducting the analyses for a large number of ground motions renders the selection as the most important factor in the analysis results. The guidelines for the nonline...
Evaluation of Motion Selection and Scaling for the Nonlinear Seismic Analysis of Concrete Gravity Dams
Soysal, Berat Feyza; Ay, Bekir Özer; Arıcı, Yalın (null; 2017-10-13)
The selection and scaling of the ground motions is usually the most effective factor determining the results of the safety assessment for concrete gravity dams. The guidelines for the nonlinear transient analyses of buildings, such as the one presented in ASCE/SEI-7-10, are generally applied to these structures. While these procedures are well-studied for the moment frames, their effectiveness and consistency has not been studied for gravity dam structures. The selection and scaling of the ground motions fo...
An Interdisciplinary Approach for Regional Seismic Damage Estimation
Askan Gündoğan, Ayşegül; Erberik, Murat Altuğ; Karim Zadeh Naghshineh, Shaghayegh; Yakut, Ahmet (2017-01-09)
In order to mitigate seismic risk in urban regions, the first task is to identify potential seismic losses in future earthquakes. Seismic loss estimation is an interdisciplinary framework including a wide range of contributions from geophysical and earthquake engineers, physical and economic planners to insurance companies. In this study, a moderate size city in Turkey, namely Erzincan, is modeled completely from geophysical attributes to the built environment. Erzincan city is on the eastern part of the No...
Investigation of the relationship of seismic intensity measures and the accumulation of damage on concrete gravity dams using incremental dynamic analysis
Soysal, BERAT FEYZA; Binici, Barış; Arıcı, Yalın (2016-04-25)
Nonlinear analysis tools are gaining prominence for the design and evaluation of concrete gravity dams. The performance limits of concrete gravity dams within the framework of performance based design are challenging to determine in comparison to those used for the assessments based on linear elastic analyses. The uncertainty in quantifying the behavior of these systems and the strong dependence of the behavior on the ground motion play an important role. The purpose of the study is to quantify the damage l...
Seismic testing of a scaled roller-compacted-concrete gravity dam
Gharibdoust, Ali; Binici, Barış; Department of Civil Engineering (2016)
Within the last half-century, seismic response analysis of concrete gravity dams has been extensively studied. Studies reveal that two types of failure modes prevail in the form of dam body cracking or base slide. The literature lacks the conditions that clearly differentiate the two failure types. In this context a state of the art single degree of freedom pseudo-dynamic testing was developed to assess the gravity dam response on smooth foundation interface. Three different hazard levels of earthquake name...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. F. Soysal, B. Ö. Ay, and Y. Arıcı, “An Investigation of the Ground Motion Scaling Procedures for the Nonlinear Seismic Analyses of Concrete Gravity Dams,”
JOURNAL OF EARTHQUAKE ENGINEERING
, pp. 930–953, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37905.