Investigation of the relationship of seismic intensity measures and the accumulation of damage on concrete gravity dams using incremental dynamic analysis

2016-04-25
Soysal, BERAT FEYZA
Binici, Barış
Arıcı, Yalın
Nonlinear analysis tools are gaining prominence for the design and evaluation of concrete gravity dams. The performance limits of concrete gravity dams within the framework of performance based design are challenging to determine in comparison to those used for the assessments based on linear elastic analyses. The uncertainty in quantifying the behavior of these systems and the strong dependence of the behavior on the ground motion play an important role. The purpose of the study is to quantify the damage levels on a representative monolith using incremental dynamic analysis (IDA). For this purpose, the constitutive model utilized was calibrated first to the existing experimental results to verify the ability of the utilized cracking model to simulate the crack propagation process. Next, the relation between the damage levels on the monolith and the ground motion characteristics was investigated. The results of the conducted IDA showed that the engineering demand parameters (EDP) such as the crest displacement and acceleration showed weak correlation with the damage states. The spectral velocity and the peak ground acceleration were determined to be better predictors for the damage on the monolith. Copyright (c) 2015 John Wiley & Sons, Ltd.
EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS

Suggestions

Evaluation of the Ground Motion Scaling Procedures for Concrete Gravity Dams
SOYSAL, BERAT FEYZA; Ay, Bekir Özer; Arıcı, Yalın (Elsevier BV; 2017-09-13)
The seismic safety of dam structures is often evaluated using time history analyses conducted with a limited number of ground motions. The selection and scaling of the ground motions is usually the most effective factor determining the results of the safety assessment. The inherent variability in the ground motion as well as the difficulty of conducting the analyses for a large number of ground motions renders the selection as the most important factor in the analysis results. The guidelines for the nonline...
An Investigation of the Ground Motion Scaling Procedures for the Nonlinear Seismic Analyses of Concrete Gravity Dams
Soysal, BERAT FEYZA; Ay, Bekir Özer; Arıcı, Yalın (2019-07-03)
Seismic assessment of gravity dams is generally carried out using time history analyses. Scaling of the motions is commonly used; however, in contrast to buildings, the performance of scaling procedures at predicting the mean and reducing the dispersion in engineering demand parameters (EDPs) is not known. The main goal of this study is to assess the performance of different scaling procedures in predicting seismic demands on dams. The performance regarding the prediction of the damage and the required numb...
Evaluation of Motion Selection and Scaling for the Nonlinear Seismic Analysis of Concrete Gravity Dams
Soysal, Berat Feyza; Ay, Bekir Özer; Arıcı, Yalın (null; 2017-10-13)
The selection and scaling of the ground motions is usually the most effective factor determining the results of the safety assessment for concrete gravity dams. The guidelines for the nonlinear transient analyses of buildings, such as the one presented in ASCE/SEI-7-10, are generally applied to these structures. While these procedures are well-studied for the moment frames, their effectiveness and consistency has not been studied for gravity dam structures. The selection and scaling of the ground motions fo...
Comparison of the Overlapping Lattice and the Finite Element Approaches for the Prediction of the Collapse State of Concrete Gravity Dams
Soysal Albostan, Berat Feyza; Arıcı, Yalın; Binici, Barış; Tuncay, Kağan (2017-10-13)
Estimating the collapse limit state of concrete gravity dams within the framework of performance based design is challenging due to the uncertainty in modelling the response of these systems and the strong dependence of the behavior on the ground motion. In this context, the purpose of the study is to investigate the prediction capability of numerical tools in determining the collapse state of concrete gravity dams. The first tool used to this end is the classical finite element method with the smeared crac...
Evaluation and selection of ground motion intensity measures for nonlinear seismic demand and fragility analysis of MDOF systems
Kadaş, Koray; Yakut, Ahmet; Department of Civil Engineering (2021-5-21)
In performance-based seismic design methodology, intensity measures are thought to be key parameters of ground motion records that relate the seismic hazard levels with the structural response or damage. Therefore, it is important to identify efficient intensity measures that are capable of reducing the variability in seismic demand predictions. There exist several simple-to-advanced scalar and vector ground motion intensity measures; however, the literature is limited in the number of comparative studies i...
Citation Formats
B. F. Soysal, B. Binici, and Y. Arıcı, “Investigation of the relationship of seismic intensity measures and the accumulation of damage on concrete gravity dams using incremental dynamic analysis,” EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, pp. 719–737, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42902.