Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Assessment of Simulated Ground Motions for Their Use in Structural Engineering Practice; A Case Study for Duzce (Turkey)
Date
2017-12-01
Author
Karim Zadeh Naghshineh, Shaghayegh
Askan Gündoğan, Ayşegül
Yakut, Ahmet
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
17
views
0
downloads
Simulated ground motions can be used in structural and earthquake engineering practice as an alternative to or to augment the real ground motion data sets. Common engineering applications of simulated motions are linear and nonlinear time history analyses of building structures, where full acceleration records are necessary. Before using simulated ground motions in such applications, it is important to assess those in terms of their frequency and amplitude content as well as their match with the corresponding real records. In this study, a framework is outlined for assessment of simulated ground motions in terms of their use in structural engineering. Misfit criteria are determined for both ground motion parameters and structural response by comparing the simulated values against the corresponding real values. For this purpose, as a case study, the 12 November 1999 Duzce earthquake is simulated using stochastic finite-fault methodology. Simulated records are employed for time history analyses of frame models of typical residential buildings. Next, the relationships between ground motion misfits and structural response misfits are studied. Results show that the seismological misfits around the fundamental period of selected buildings determine the accuracy of the simulated responses in terms of their agreement with the observed responses.
Subject Keywords
Stochastic finite-fault methodology
,
Simulated ground motions
,
Nonlinear time history analysis
,
The 1999 Duzce earthquake
URI
https://hdl.handle.net/11511/37960
Journal
Pure And Applied Geophysics
DOI
https://doi.org/10.1007/978-3-319-72709-7_16
Collections
Department of Civil Engineering, Article