Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Simulation of large earthquakes and its implications on earthquake insurance rates: a case study in Bursa region (Turkey)
Date
2017-01-01
Author
ÜNAL, Baris
Askan Gündoğan, Ayşegül
Kestel, Sevtap Ayşe
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
272
views
0
downloads
Cite This
Ground motion intensity parameters of past and potential earthquakes are required for a range of purposes including earthquake insurance practice. In regions with no or sparse earthquake recordings, most of the available methods generate only peak ground motion parameters. For cases where full ground motion time histories are required, simulations that consider fault rupture processes become necessary. In this study, a major novel use of simulated ground motions is presented in insurance premium calculations which also require ground motion intensity measures that are not always available through observations. For this purpose, potential earthquakes in Bursa are simulated using stochastic finite-fault simulation method with dynamic corner frequency model. To ensure simulations with reliable synthetic ground motions, input parameters are derived from regional data. Regional model parameters are verified by comparisons against the observations as well as ground motion prediction equations. Next, a potential large magnitude event in Bursa is simulated. Distribution of peak ground motion parameters and time histories at selected locations are obtained. From these parameters, the corresponding Modified Mercalli Intensities (MMI) are estimated. Later, these MMIs are used as the main ground motion parameter in damage probability matrices (DPM). Return period of the scenario earthquake is obtained from the previous regional seismic hazard studies. Finally, insurance rates for Bursa region are determined with implementation of two new approaches in the literature. The probability of the scenario event and the expected mean damage ratios (MDR) from the corresponding DPMs are used, and the results are compared to Turkish Catastrophe Insurance Pool (TCIP) rates. Results show that insurance premiums can be effectively computed using simulated ground motions in the absence of real data.
Subject Keywords
Ground motion simulation
,
Stochastic finite-fault model
,
Insurance premiums
,
Local seismic parameters
,
TCIP
URI
https://hdl.handle.net/11511/30795
Journal
NATURAL HAZARDS
DOI
https://doi.org/10.1007/s11069-016-2578-4
Collections
Graduate School of Applied Mathematics, Article
Suggestions
OpenMETU
Core
Assessment of Simulated Ground Motions in Earthquake Engineering Practice: A Case Study for Duzce (Turkey)
Karim Zadeh Naghshineh, Shaghayegh; Askan Gündoğan, Ayşegül; Yakut, Ahmet (2015-11-20)
Simulated ground motions can be used in structural and earthquake engineering practice as an alternative to or to augment the real ground motion data sets. Common engineering applications of simulated motions are linear and nonlinear time history analyses of building structures, where full acceleration records are necessary. Before using simulated ground motions in such applications, it is important to assess those in terms of their frequency and amplitude content as well as their match with the correspondi...
Assessment of Simulated Ground Motions for Their Use in Structural Engineering Practice; A Case Study for Duzce (Turkey)
Karim Zadeh Naghshineh, Shaghayegh; Askan Gündoğan, Ayşegül; Yakut, Ahmet (2017-12-01)
Simulated ground motions can be used in structural and earthquake engineering practice as an alternative to or to augment the real ground motion data sets. Common engineering applications of simulated motions are linear and nonlinear time history analyses of building structures, where full acceleration records are necessary. Before using simulated ground motions in such applications, it is important to assess those in terms of their frequency and amplitude content as well as their match with the correspondi...
Seismological and Engineering Demand Misfits for Evaluating Simulated Ground Motion Records
Karim Zadeh Naghshineh, Shaghayegh (2019-11-01)
Simulated ground motions have recently gained more attention in seismology and earthquake engineering. Since different characteristics of waveforms are expected to influence alternative structural response parameters, evaluation of simulations, for key components of seismological and engineering points of view is necessary. When seismological aspect is of concern, consideration of a representative set of ground motion parameters is imperative. Besides, to test the applicability of simulations in earthquake ...
Hybrid-Empirical Ground Motion Estimations for Georgia
Tsereteli, Nino; Askan Gündoğan, Ayşegül; Hamzehloo, Hossein (2016-10-01)
Ground motion prediction equations are essential for several purposes ranging from seismic design and analysis to probabilistic seismic hazard assessment. In seismically active regions without sufficiently strong ground motion data to build empirical models, hybrid models become vital. Georgia does not have sufficiently strong ground motion data to build empirical models. In this study, we have applied the host-totarget method in two regions in Georgia with different source mechanisms. According to the tect...
NEAR FIELD SEISMIC SITE RESPONSE ANALYSIS OF ALLUVIAL BASIN: A CASE STUDY FOR THE GÖLYAKA, DÜZCE, TURKEY
Yousefı Bavıl, Karım; Koçkar, Mustafa Kerem; Akgün, Haluk (null; 2017-10-13)
Seismic events in the last few decades have demonstrated that local site conditions particular near earthquake prone areas that can generate significant amplifications and spatial variations of earthquake ground motion play a major role in the level of ground shaking. Hence, the amplification of ground motion due to local site effects (i.e., topographical conditions, ground motion resonance and basin geometry, etc.) plays an important role in increasing seismic damage. The study area is located in the Gölya...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. ÜNAL, A. Askan Gündoğan, and S. A. Kestel, “Simulation of large earthquakes and its implications on earthquake insurance rates: a case study in Bursa region (Turkey),”
NATURAL HAZARDS
, pp. 215–236, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30795.