CONTEXT BASED SUPER RESOLUTION IMAGE RECONSTRUCTION

2009-08-21
Turgay, Emre
Akar, Gözde
In this paper a context based super-resolution (SR) image reconstruction method is proposed. The proposed maximum a-posteriori (MAP) based estimator identifies local gradients and textures for selecting the optimal SR method for the region of interest. Texture segmentation and gradient map estimation are done prior to the reconstruction stage. Gradient direction is used for optimal noise reduction along the edges for non-textured regions. On the other hand, regularization term is cancelled for textured regions so that the resultant method reduces to maximum likelihood (ML) solution. It is demonstrated on Brodatz Texture Database that ML solution gives the best PSNR values on textures compared to the regularized SR methods in the literature. Experimental results show that the proposed hybrid method has superior performance in terms of Peak Signal-to-Noise-Ratio (PSNR), Structural Similarity Index Measure (SSIM) compared the SR methods in the literature.

Suggestions

Direction Adaptive Super-Resolution Imaging
Turgay, Emre; Akar, Gözde (2009-04-11)
In this paper a novel edge-presenting super-resolution (SR) image reconstruction method is proposed. The proposed maximum a-posteriori (MAP) based estimator uses gradient direction and amount for optimal noise reduction while presenting the edges. Compared to the other edge-presenting methods, the proposed algorithm uses the gradient direction for optimum regularization. The proposed method estimates gradient amplitude and direction at each iteration. This gradient map guides the SR reconstruction stage thr...
Analysis of Image Registration with Tangent Distance
Vural, Elif (2014-01-01)
The computation of the geometric transformation between a reference and a target image, known as registration or alignment, corresponds to the projection of the target image onto the transformation manifold of the reference image (the set of images generated by its geometric transformations). However, it often takes a nontrivial form such that the exact computation of projections on the manifold is difficult. The tangent distance method is an effective algorithm for solving this problem by exploiting a line...
Scale-Adaptive ICP
Sahillioğlu, Yusuf; Kavan, Ladislav (2021-07-01)
We present a new scale-adaptive ICP (Iterative Closest Point) method which aligns two objects that differ by rigid transformations (translations and rotations) and uniform scaling. The motivation is that input data may come in different scales (measurement units) which may not be known a priori, or when two range scans of the same object are obtained by different scanners. Classical ICP and its many variants do not handle this scale difference problem adequately. Our novel solution outperforms three differe...
Shallow foundation analysis by smoothed particle hydrodynamics method
Emren, Volkan; Tuncay, Kağan (2021-09-08)
This paper illustrates the use of Smoothed Particle Hydrodynamics (SPH) technique to compute the bearingcapacity of shallow foundations and establish their failure mechanism. SPH is a numerical method based on aLagrangian formulation to solve partial differential equations by discretizing the computational domain with a setof particles that have field variables such as mass, and density. SPH is a meshless method and is not affected bythe particles’ arbitrariness due to its adaptive nature, and it can natura...
DIRECTIONALLY ADAPTIVE SUPER-RESOLUTION
Turgay, Emre; Akar, Gözde (2009-11-10)
In this paper a novel direction adaptive super-resolution (SR) image reconstruction method is proposed. The proposed maximum a-posteriori (MAP) based estimator uses gradient direction for optimal noise reduction while preserving the edges. Compared to the other edge-preserving methods, the proposed algorithm uses gradient direction in addition to the gradient amplitude for optimum regularization. The method comprises a gradient amplitude and direction estimation stage where a gradient direction map is obtai...
Citation Formats
E. Turgay and G. Akar, “CONTEXT BASED SUPER RESOLUTION IMAGE RECONSTRUCTION,” 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37977.