From smooth curves to universal metrics

Download
2016-08-22
GÜRSES, METİN
Sisman, Tahsin Cagri
Tekin, Bayram
A special class of metrics, called universal metrics, solves all gravity theories defined by covariant field equations purely based on the metric tensor. Since we currently lack the knowledge of what the full quantum-corrected field equations of gravity are at a given microscopic length scale, these metrics are particularly important in understanding quantum fields in curved backgrounds in a consistent way. However, finding explicit universal metrics has been a difficult problem as there does not seem to be a procedure for it. In this work, we overcome this difficulty and give a construction of universal metrics of d-dimensional spacetime from curves constrained to live in a (d - 1)-dimensional Minkowski spacetime or a Euclidean space.
PHYSICAL REVIEW D

Suggestions

EXACT SOLUTIONS OF INFINITE DERIVATIVE GRAVITY
Öcal, Sultan Eylül; Tekin, Bayram; Kılıçarslan, Ercan; Department of Physics (2021-8)
Infinite Derivative Gravity (IDG) is a modified gravity theory which can avoid the singularities and Ultraviolet problem of gravity. This thesis examines the effects of IDG on these problems. First, the propagators and Newtonian potential will be examined as well as the conditions necessary for avoidance of singularities for perturbations around Minkowski background are found. Second, we study the exact pp-wave and AdS-plane wave solutions of quadratic and Infinite derivative gravity theories. We construct ...
Kerr-Schild-Kundt metrics are universal
GÜRSES, METİN; Sisman, Tahsin Cagri; Tekin, Bayram (IOP Publishing, 2017-04-06)
We define (non-Einsteinian) universal metrics as the metrics that solve the source-free covariant field equations of generic gravity theories. Here, extending the rather scarce family of universal metrics known in the literature, we show that the Kerr-Schild-Kundt class of metrics are universal. Besides being interesting on their own, these metrics can provide consistent backgrounds for quantum field theory at extremely high energies.
ANALYSIS OF MILLIMETER WAVE-GUIDES ON ANISOTROPIC SUBSTRATES USING THE 3-DIMENSIONAL TRANSMISSION-LINE MATRIX-METHOD
BULUTAY, C; PRASAD, S (1993-06-01)
Three-dimensional condensed asymmetrical node, variable grid, transmission-line matrix (TLM) method has been used in analyzing several millimeter waveguides on anisotropic substrates. The dispersion characteristics of image guides together with field and energy confinement properties at millimeter-wave frequencies have been investigated. Edge coupled microstrip line on a uniaxial substrate is analyzed for the even and odd mode dispersion characteristics. Finally the same analysis is repeated for bilateral f...
Analytical solutions of shallow-water wave equations
Aydın, Baran; Kanoğlu, Utku; Department of Engineering Sciences (2011)
Analytical solutions for the linear and nonlinear shallow-water wave equations are developed for evolution and runup of tsunamis –long waves– over one- and two-dimensional bathymetries. In one-dimensional case, the nonlinear equations are solved for a plane beach using the hodograph transformation with eigenfunction expansion or integral transform methods under different initial conditions, i.e., earthquake-generated waves, wind set-down relaxation, and landslide-generated waves. In two-dimensional case, th...
On the energy-momentum in closed universes
Salti, M (Springer Science and Business Media LLC, 2006-02-01)
Using the Moller, Einstein, Bergmann-Thomson and Landau-Lifshitz energy-momentum definitions both in general relativity and teleparallel gravity, we find the energy-momentum of the closed universe based on the generalized Bianchi-I type metric.
Citation Formats
M. GÜRSES, T. C. Sisman, and B. Tekin, “From smooth curves to universal metrics,” PHYSICAL REVIEW D, pp. 0–0, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38350.