Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Synthesis of CuO nanostructures on zeolite-Y and investigation of their CO2 adsorption properties
Date
2017-10-01
Author
Boruban, Cansu
Nalbant Esentürk, Emren
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
272
views
0
downloads
Cite This
Copper(II) oxide (CuO) nanoparticles (NPs) in two different morphologies, spiky and spherical, were synthesized on zeolite-Y by a modified impregnation method, and their CO2 adsorbing capabilities were investigated under standard conditions (1 atm and 298 K). The properties and CO2 adsorption performances of the hybrid systems were characterized by transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray, X-ray diffraction, X-ray photoelectron spectroscopy, atomic absorption spectroscopy, and Brunauer-Emmett-Teller analyses. The microscopy analyses showed that spiky nanostructures have a length of approximately 450 nm, and the spherical ones are approximately 18 nm in diameter. Quantitative analyses demonstrated that CuO NPs in both morphologies on the zeolite surface led to an improvement in their CO2 adsorption capacities. This enhancement is mainly due to the higher CO2 chemisorption capability of CuO NP-zeolite systems compared to that of bare zeolite. The presence of spiky and spherical CuO NPs on the zeolite surface resulted in increases of 112% and 86% in the amount of chemisorbed CO2 on the zeolite-Y surfaces, respectively.
Subject Keywords
Adsorption
,
Nanostructure
,
Zeolite
URI
https://hdl.handle.net/11511/38361
Journal
JOURNAL OF MATERIALS RESEARCH
DOI
https://doi.org/10.1557/jmr.2017.337
Collections
Department of Chemistry, Article
Suggestions
OpenMETU
Core
Development of a novel PANI@WO3 hybrid composite and its application as a promising adsorbent for Cr(VI) ions removal
Hsini, Abdelghani; Naciri, Yassine; Laabd, Mohamed; Bouzıanı, Asmae; Navío, J.A.; Puga, F.; Boukherroub, Rabah; Lakhmiri, Rajae; Albourine, Abdallah (2021-10-01)
In the current study, an in-situ oxidative polymerization method was used to synthesize polyaniline-coated tungsten trioxide biphasic composite (PANI@WO3). The as-developed composite material properties were elucidated using different characterization tools such as X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), N2 sorption-desorption isotherm, and X-ray photoelect...
Investigation of characteristics of urea and butyrylcholine chloride biosensors based on ion-selective field-effect transistors modified by the incorporation of heat-treated zeolite Beta crystals
Soy, Esin; Arkhypova, Valentyna; Soldatkin, Oleksandr; Shelyakina, Margarita; Dzyadevych, Sergei; Warzywoda, Juliusz; Sacco, Albert; Akata Kurç, Burcu (2012-10-01)
Urea and butyrylcholine chloride (BuChCl) biosensors were prepared by adsorption of urease and butyrylcholinesterase (BuChE) on heat-treated zeolite Beta crystals, which were incorporated into membranes deposited on ion-selective field-effect transistor (ISFET) surfaces. The responses, stabilities, and use for inhibition analysis of these biosensors were investigated. Different heat treatment procedures changed the amount of Bronsted acid sites without affecting the size, morphology, overall Si/Al ratio, ex...
Preparation and characterization of zeolite beta-polyurethane composite membranes
Aksoy, Eda Ayse; Akata, Burcu; Bac, Nurcan; Hasırcı, Nesrin (2007-06-05)
Incorporation of zeolite into polyurethane (PU) membranes was investigated by using as-synthesized and calcined zeolite beta particles at two different loading contents (0.1 and 1 wt %). The chemical interaction between the zeolite beta crystals and PU was observed by ATR-FTIR spectroscopy. The SEM results suggested that the calcined zeolite beta crystals were more homogeneously dispersed in the composite membranes than the assynthesized zeolite beta crystals. DMA results demonstrated that all composite mem...
Development of novel Ag/bauxite nanocomposite as a heterogeneous catalyst for biodiesel production
Bet-Moushoul, Elsie; Farhadi, Khalil; Mansourpanah, Yaghoub; Molaie, Rahim; Forough, Mehrdad; Nikbakht, Ali Mohammad (2016-07-01)
Ag/bauxite nanocomposites have been prepared using in situ reduction of aqueous AgNO3 solution in a bauxite matrix and investigated for the transesterification of sunflower oil with methanol in order to study their potential as heterogeneous catalysts. The prepared nanocopmosites were characterized by XRD, SEM, EDX, FT-IR, and TG- DTA. The Central Composite Design of the Response Surface Methodology was used to optimize the effect of reaction temperature, reaction time, catalyst loading and methanol to oil ...
Production of boron nitride by carbothermic and mechanochemical methods, and nanotube formation
Camurlu, HE; Aydogdu, A; Topkaya, Yavuz Ali; Sevinc, N (2003-09-12)
The formation of hexagonal boron nitride by carbothermic reduction of boron oxide and nitridation has been examined. Experiments were conducted in the temperature range of 1100-1500degreesC for durations between 15-240 minutes. Products were examined by X-ray, SEM and chemical analysis. The results showed that the reaction proceeds through a gaseous boron containing species, which is most probably 13203(g). It was found that all of the carbon was consumed and formation of boron nitride was complete in 2 hou...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. Boruban and E. Nalbant Esentürk, “Synthesis of CuO nanostructures on zeolite-Y and investigation of their CO2 adsorption properties,”
JOURNAL OF MATERIALS RESEARCH
, pp. 3669–3678, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38361.