Photofermentative hydrogen production from molasses: Scale-up and outdoor operation at low carbon-to-nitrogen ratio

Savasturk, Dilan
Kayahan, Emine
Koku, Harun
Photofermentative hydrogen production was carried out under outdoor conditions with a Rhodobacter capsulatus strain on molasses, a renewable and sustainable feedstock. An existing photobioreactor design was scaled-up from 9 L to 20 L. The decreased carbon-to nitrogen (C/N) ratio of 13.0, compared to our previous work, accelerated growth and resulted in a reduced lag period for hydrogen production as well as higher productivities in the exponential phase. However, the low C/N ratio also promoted a high optical density due to growth, limiting light transmission. Still, the maximum productivity was found as 0.47 mol H-2/(m(3).h), significantly higher than our result with the smaller reactor volume. High rates of production could not be maintained presumably due to the combined effects of cloudy periods, the aforementioned C/N ratio and decreasing pH. These results suggest that the scale-up was successful and there is potential for further improvement using optimal C/N ratio and cell concentration values. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.


Photofermentative hydrogen production from molasses in tubular photobioreactor with pH control
Oflaz, Fatma Betül; Koku, Harun; Department of Chemical Engineering (2019)
Biological hydrogen production has the potential to supply hydrogen from various wastes as feedstock and operation under ambient conditions. In order to obtain cost effective production, photobioreactors (PBRs) that can operate for long durations while utilizing waste are necessary. Two primary issues limiting the duration are decrease in pH and the non-optimal C/N ratio. The main aim of this study was to construct and operate a pH control system for a pilot scale photobioreactor (20 L) to achieve prolonged...
Biohydrogen production from beet molasses by sequential dark and photofermentation
Ozgur, Ebru; Mars, Astrid E.; Peksel, Beguem; Louwerse, Annemarie; Yucel, Meral; Gündüz, Ufuk; Claassen, Pieternel A. M.; Eroglu, Inci (2010-01-01)
Biological hydrogen production using renewable resources is a promising possibility to generate hydrogen in a sustainable way. In this study, a sequential dark and photofermentation has been employed for biohydrogen production using sugar beet molasses as a feedstock. An extreme thermophile Caldicellulosiruptor saccharolyticus was used for the dark fermentation, and several photosynthetic bacteria (Rhodobacter capsulatus wild type, R. capsulatus hup(-) mutant, and Rhodopseudomonas palustris) were used for t...
Ethanol steam reforming with zirconia based catalysts
Arslan, Arzu; Doğu, Timur; Department of Chemical Engineering (2014)
Production of hydrogen, which has been considered as an environmentally clean ideal energy carrier, from abundant energy resources cleanly and renewably is essential to support sustainable energy development. Hydrogen production from bio-ethanol by steam reforming process is a promising approach, since bio-ethanol is the most available bio-fuel in the world and steam reforming of ethanol yields formation of 6 moles of hydrogen per mole of ethanol. Support material used for nickel based catalysts plays a cru...
Biohydrogen production by Rhodobacter capsulatus on acetate at fluctuating temperatures
Ozgur, Ebru; Uyar, Basar; Ozturk, Yavuz; Yucel, Meral; Gündüz, Ufuk; Eroglu, Inci (2010-03-01)
Hydrogen is a clean energy alternative to fossil fuels. Photosynthetic bacteria produce hydrogen from organic compounds under anaerobic, nitrogen-limiting conditions through a light-dependent electron transfer process. In this study, the hydrogen production efficiency of phototrophic bacteria, Rhodobacter capsulatus and its Hup mutant strain (an uptake hydrogenase deleted strain) were tested on different initial acetate concentrations at fluctuating temperatures with indoor and outdoor photobioreactors. Ace...
Biohydrogen production by immobilized purple nonsulfur bacteria
Sağır, Emrah; Yücel, Ayşe Meral; Koku, Harun; Department of Biochemistry (2018)
Biological hydrogen production by purple non-sulfur bacteria is an attractive route to build a large scale hydrogen production system in outdoor natural conditions from various renewable sources. In this study, biological hydrogen production was carried out by agar immobilized purple non-sulfur bacteria in indoor and outdoor conditions. A novel photobioreactor (1.4 L volume) was built and operated continuously for 20 to 64 days in sequential batch mode for long-term hydrogen production using agar-immobilize...
Citation Formats
D. Savasturk, E. Kayahan, and H. Koku, “Photofermentative hydrogen production from molasses: Scale-up and outdoor operation at low carbon-to-nitrogen ratio,” INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, pp. 11676–11687, 2018, Accessed: 00, 2020. [Online]. Available: