Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Biohydrogen production from beet molasses by sequential dark and photofermentation
Date
2010-01-01
Author
Ozgur, Ebru
Mars, Astrid E.
Peksel, Beguem
Louwerse, Annemarie
Yucel, Meral
Gündüz, Ufuk
Claassen, Pieternel A. M.
Eroglu, Inci
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
0
views
0
downloads
Biological hydrogen production using renewable resources is a promising possibility to generate hydrogen in a sustainable way. In this study, a sequential dark and photofermentation has been employed for biohydrogen production using sugar beet molasses as a feedstock. An extreme thermophile Caldicellulosiruptor saccharolyticus was used for the dark fermentation, and several photosynthetic bacteria (Rhodobacter capsulatus wild type, R. capsulatus hup(-) mutant, and Rhodopseudomonas palustris) were used for the photofermentation. C. saccharolyticus was grown in a pH-controlled bioreactor, in batch mode, on molasses with an initial sucrose concentration of 15 g/L. The influence of additions of NH4+ and yeast extract on sucrose consumption and hydrogen production was determined. The highest hydrogen yield (4.2 mol of H-2/mol sucrose) and maximum volumetric productivity (7.1 mmol H-2/L-c.h) were obtained in the absence of NH4+. The effluent of the dark fermentation containing no NH4+ was fed to a photobioreactor, and hydrogen production was monitored under continuous illumination, in batch mode. Productivity and yield were improved by dilution of the dark fermentor effluent (DFE) and the additions of buffer, iron-citrate and sodium molybdate. The highest hydrogen yield (58% of the theoretical hydrogen yield of the consumed organic acids) and productivity (1.37 mmol H-2/L-c.h) were attained using the hup(-) mutant of R. capsulatus. The overall hydrogen yield from sucrose increased from the maximum of 4.2 mol H-2/mol sucrose in dark fermentation to 13.7 mol H-2/mol sucrose (corresponding to 57% of the theoretical yield of 24 mol of H-2/mole of sucrose) by sequential dark and photofermentation. (C) 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
Subject Keywords
Molasses
,
Photofermentation
,
Dark fermentation
,
Biohydrogen
URI
https://hdl.handle.net/11511/31195
Journal
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
DOI
https://doi.org/10.1016/j.ijhydene.2009.10.094
Collections
Graduate School of Natural and Applied Sciences, Article