Hide/Show Apps

Analytical solutions to orthotropic variable thickness disk problems

An analytical model is developed to estimate the mechanical response of nonisothermal, orthotropic, variable thickness disks under a variety of boundary conditions. Combining basic mechanical equations of disk geometry with the equations of orthotropic material, the elastic equation of the disk is obtained. This equation is transformed into a standard hypergeometric differential equation by means of a suitable transformation. An analytical solution is then obtained in terms of hypergeometric functions. The boundary conditions used to complete the solutions simulate rotating annular disks with two free surfaces, stationary annular disks with pressurized inner and free outer surfaces, and free inner and pressurized outer surfaces. The results of the solutions to each of these cases are presented in graphical forms. It is observed that, for the three cases investigated the elastic orthotropy parameter turns out to be an important parameter affecting the elastic behavior