Grain-Scale Investigations of Deformation Heterogeneities in Aluminum Alloys

2018-04-25
GÜLER, BARAN
Simsek, Ulke
Yalçınkaya, Tuncay
EFE, MERT
The an isotropic deformation of Aluminum alloys at micron scale exhibits localized deformation, which has negative implications on the macroscale mechanical and forming behavior. The scope of this work is twofold. Firstly, micro-scale deformation heterogeneities affecting forming behavior of aluminum alloys is investigated through experimental microstructure analysis at large strains and various strain paths. The effects of initial texture, local grain misorientation, and strain paths on the strain localizations are established. In addition to uniaxial tension condition, deformation heterogeneities are also investigated under equibiaxial tension condition to determine the strain path effects on the localization behavior. Secondly, the morphology and the crystallographic data obtained from the experiments is transferred to Abaqus software, in order to predict both macroscopic response and the microstructure evolution though crystal plasticity finite element simulations. The model parameters are identified through the comparison with experiments and the capability of the model to capture real material response is discussed as well.

Suggestions

Plastic slip patterns through rate-independent and rate-dependent plasticity
Lancioni, Giovanni; Yalçınkaya, Tuncay (2014-05-09)
Plastic deformation induces various types of dislocation microstructures at different length scales, which eventually results in a heterogeneous deformation field in metallic materials. Development of such structures manifests themselves as macroscopic hardening/softening response and plastic anisotropy during strain path changes, which is often observed during forming processes. In this paper we present two different non-local plasticity models based on non-convex potentials to simulate the intrinsic rate-...
Numerical simulation of thermal convection under the influence of a magnetic field by using solenoidal bases
Yarımpabuç, Durmuş; Tarman, Işık Hakan; Department of Engineering Sciences (2011)
The effect of an imposed magnetic field on the thermal convection between rigid plates heated from below under the influence of gravity is numerically simulated in a computational domain with periodic horizontal extent. The numerical technique is based on solenoidal basis functions satisfying the boundary conditions for both velocity and induced magnetic field. The expansion bases for the thermal field are also constructed to satisfy the boundary conditions. The governing partial differential equations are ...
Grain boundary doping strengthens nanocrystalline copper alloys
Özerinç, Sezer; Vo, Nhon Q.; BELLON, Pascal; Averback, Robert S.; King, William P. (2012-10-01)
Nanoindentation hardness measurements were performed on nanocrystalline (nc-) Cu alloys to test recent molecular dynamics predictions that (i) solute segregation to grain boundaries can lead to significant strengthening and (ii) solutes with large size mismatch with Cu are most effective. Results show that the hardness of nc-Cu90Nb10 is greater than 5 GPa, more than double that of pure nc-Cu, whereas similar additions of Fe solute have nearly no effect. These results are in good agreement with simulations. ...
Grain boundary grooving induced by the anisotropic surface drift diffusion driven by the capillary and electromigration forces: Simulations
Akyildiz, Oncu; Ogurtani, Tarik Omer (AIP Publishing, 2011-08-15)
The morphological evolution kinetics of a bicrystal thin film induced by anisotropic surface drift diffusion and driven by the applied electrostatic field is investigated via self consistent dynamical computer simulations. The physico-mathematical model, which is based upon the irreversible thermodynamic treatment of surfaces and interfaces with singularities [T. O. Ogurtani, J. Chem. Phys. 124, 144706 (2006)], provided us with auto-control on the otherwise free-motion of the triple junction at the intersec...
Numerical and experimental analysis for comparison of square, cylindrical and plate fin arrays in external flow
İnci, Aykut Barış; Bayer, Özgür; Department of Mechanical Engineering (2018)
Geometrical optimization of square, cylindrical and plate fins for heat transfer augmentation is numerically performed in the external flow. Heat transfer performance of fins with different profiles are compared with same Reynolds number. The relation between the thermal characteristic of fins and boundary conditions like free-stream velocity and heat input are investigated. Experimental studies are performed using manufacturable fins to validate numerical model. Heat transfer correlations are derived in or...
Citation Formats
B. GÜLER, U. Simsek, T. Yalçınkaya, and M. EFE, “Grain-Scale Investigations of Deformation Heterogeneities in Aluminum Alloys,” 2018, vol. 1960, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38602.