Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
Discretization and Parallel Iterative Schemes for Advection-Diffusion-Reaction Problems
Date
2015-09-18
Author
Sivas, Abdullah Ali
Manguoğlu, Murat
Boonkkamp, J. H. M. ten Thije
Anthonissen, M. J. H.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
5
views
0
downloads
Conservation laws of advection-diffusion-reaction (ADR) type are ubiquitous in continuum physics. In this paper we outline discretization of these problems and iterative schemes for the resulting linear system. For discretization we use the finite volume method in combination with the complete flux scheme. The numerical flux is the superposition of a homogeneous flux, corresponding to the advection-diffusion operator, and the inhomogeneous flux, taking into account the effect of the source term (ten Thije Boonkkamp and Anthonissen, J Sci Comput 46(1): 47-70, 2011). For a three-dimensional conservation law this results in a 27point coupling for the unknown as well as the source term. Direct solution of the sparse linear systems that arise in 3D ADR problems is not feasible due to fill-in. Iterative solution of such linear systems remains to be the only efficient alternative which requires less memory and shorter time to solution compared to direct solvers. Iterative solvers require a preconditioner to reduce the number of iterations. We present results using several different preconditioning techniques and study their effectiveness.
Subject Keywords
Systems
URI
https://hdl.handle.net/11511/38634
DOI
https://doi.org/10.1007/978-3-319-39929-4_27
Collections
Department of Computer Engineering, Conference / Seminar