Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
DETERMINATION OF THE BOUNDARY OF AN OBJECT INSERTED INTO A WATER-FILLED CYLINDER
Date
1992-01-01
Author
IDER, YZ
NAKIBOGLU, B
Kuzuoğlu, Mustafa
Gençer, Nevzat Güneri
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
225
views
0
downloads
Cite This
In order to circumvent the electrode position determination problem in static electrical impedance tomography, it is possible to insert the object to be imaged into a water-filled cylinder on which the electrodes are at fixed and known positions. It has previously been shown that if the boundary of the internally placed object and the conductivity of the salty water in the cylinder are known, then a significant improvement in the conductivity image of the object is obtained. An algorithm for finding the boundary of an internally placed object is developed based on the finite element method (FEM). The boundary is assumed to obey a parametric model and the parameters are estimated by inverting a matrix representing the sensitivity of the boundary voltage measurements to parameter variations. The algorithm assumes that the object's internal conductivity is uniform and known. Simulation studies show that if the internal conductivity is not uniform to the extent found in the arm cross-sections, up to 9% error in the boundary, as measured from a centrally placed reference point, may result. It is also shown that if previous knowledge about the boundary shape is used to model the boundary with fewer numbers of parameters, then the boundary may be found with less error.
Subject Keywords
Biophysics
URI
https://hdl.handle.net/11511/38668
Journal
CLINICAL PHYSICS AND PHYSIOLOGICAL MEASUREMENT
DOI
https://doi.org/10.1088/0143-0815/13/a/029
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
ANALYSIS OF 3-DIMENSIONAL SOFTWARE EIT PHANTOMS BY THE FINITE-ELEMENT METHOD
Kuzuoğlu, Mustafa; IDER, YZ (IOP Publishing, 1992-01-01)
In electrical impedance tomography, two-dimensional (2D) finite element solutions are used in the imaging algorithms. It is assumed that a major part of the current flowing through the object is restricted to the measurement plane (i.e. the plane determined by the electrodes which are used for measuring voltage differences) and the current flowing elsewhere is negligible. However, there is usually a three-dimensional (3D) variation of the conductivity distribution and if there are regions of high contrast c...
Electrical impedance tomography using induced and injected currents
Gençer, Nevzat Güneri; Kuzuoğlu, Mustafa (IOP Publishing, 1992-01-01)
A two-dimensional forward problem formulation is introduced for electrical impedance tomography (EIT) using induced currents. The forward problem is linearised around a certain resistivity distribution and the inverse problem is formulated as a solution of a linear system of equations. Sensitivity of boundary measurements to resistivity variations arc analysed for spatially uniform, linear and quadratic fields. The formulation, however, is suitable for studying the effects of a general magnetic field applie...
Effect of protein aggregation in the aqueous phase on the binding of membrane proteins to membranes
Doebler, R; Basaran, N; Goldston, H; Holloway, PW (Elsevier BV, 1999-02-01)
Analysis of the binding of hydrophobic peptides or proteins to membranes generally assumes that the solute is monomeric in both the aqueous phase and the membrane. Simulations were performed to examine the effect of solute self-association in the aqueous phase on the binding of monomeric solute to lipid vesicles. Aggregation lowered the initial concentration of monomeric solute, which was then maintained at a relatively constant value at the expense of the aggregated solute, as the lipid concentration was i...
DETERMINATION OF OPTIMUM INJECTED CURRENT PATTERNS IN ELECTRICAL-IMPEDANCE TOMOGRAPHY
KOKSAL, A; Eyüboğlu, Behçet Murat (IOP Publishing, 1995-08-01)
The problem of finding the optimum current under different constraints in electrical impedance tomography is cast into a non-linear optimization problem. Optimum currents are investigated for a two-dimensional cylindrical body with a concentric or an eccentric inhomogeneity under the constraints of constant dissipated power and constant total injected current. For a concentric inhomogeneity, it is shown that the opposite drive results in a better distinguishability than the cosine current pattern under the ...
Determining the optimal parameters for the MHD flow and heat transfer with variable viscosity and Hall effect
EVCİN, CANSU; Uğur, Ömür; Tezer, Münevver (2018-09-15)
The direct and optimal control solution of the laminar, fully developed, steady MHD flow of an incompressible, electrically conducting fluid in a duct is considered together with the heat transfer. The flow is driven by a constant pressure gradient and an external uniform magnetic field. The fluid viscosity is temperature dependent varying exponentially and the Hall effect, viscous and Joule dissipations are taken into consideration. The control problem is solved by the discretize-then-optimize approach usi...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Y. IDER, B. NAKIBOGLU, M. Kuzuoğlu, and N. G. Gençer, “DETERMINATION OF THE BOUNDARY OF AN OBJECT INSERTED INTO A WATER-FILLED CYLINDER,”
CLINICAL PHYSICS AND PHYSIOLOGICAL MEASUREMENT
, pp. 151–154, 1992, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38668.