Effect of protein aggregation in the aqueous phase on the binding of membrane proteins to membranes

Doebler, R
Basaran, N
Goldston, H
Holloway, PW
Analysis of the binding of hydrophobic peptides or proteins to membranes generally assumes that the solute is monomeric in both the aqueous phase and the membrane. Simulations were performed to examine the effect of solute self-association in the aqueous phase on the binding of monomeric solute to lipid vesicles. Aggregation lowered the initial concentration of monomeric solute, which was then maintained at a relatively constant value at the expense of the aggregated solute, as the lipid concentration was increased. The resultant binding isotherm has a more linear initial portion rather than the classic hyperbolic shape, Although this shape is diagnostic of solute self-association in the aqueous phase, various combinations of values for the membrane partition coefficient and the solute self-association constant will generate similar isotherms. Data for cytochrome b(5) were analyzed and, when the self-association constant was estimated by gel filtration, a unique value for the membrane partition coefficient was obtained. Thus, to obtain a true partition coefficient the state of the solute in the aqueous phase must be known. If the concentration of the monomeric solute species in the aqueous phase can be independently determined, then, even with heterogeneous aggregates, the true partition coefficient can be obtained.


Effect of progesterone on DPPC membrane: Evidence for lateral phase separation and inverse action in lipid dynamics
Korkmaz, F; Severcan, Feride (Elsevier BV, 2005-08-15)
Interactions of progesterone with zwitterionic dipalmitoyl phosphatidylcholine (DPPC) triultilamellar liposomes were investigated as a function of temperature and progesterone concentration by using three non-invasive techniques namely Fourier transform infrared spectroscopy, turbidity at 440 nm, and differential scanning calorimetry. The results reveal that progesterone changes the physical properties of DPPC bilayers by decreasing the main phase-transition temperature, abolishing the pre-transition, broad...
Effects of Isoflurane, Halothane, and Chloroform on the Interactions and Lateral Organization of Lipids in the Liquid-Ordered Phase
Türkyılmaz, Serhan; Regen, Steven L. (2011-12-06)
The first quantitative insight has been obtained into the effects that volatile anesthetics have on the interactions and lateral organization of lipids in model membranes that mimic "lipid rafts". Specifically, nearest-neighbor recogntion measurements, in combination with Monte Carlo simulations, have been used to investigate the action of isoflurane, halothane, and chloroform on the compactness and lateral organization of cholesterol-rich bilayers of 1,2-dipalmitoylsn-glycero-3-phosphocholine (DPPC) in the...
Investigation of Gender Effect on Obesity using a Model of Inbreed Obese Mouse Lines by Fourier Transform Infrared Imaging
Baloglu, Fatma Kucuk; Brockmann, Gudrun; Heise, Sebastian; Garip, Sebnem; Severcan, Feride (2015-01-27)
Lipid accumulation and storage of lipids in adipocytes during obesity cause structural and functional changes in adipose tissue conformation. The expansion of visceral (VAT) and subcutaneous (SCAT) adipose tissue mass in the body is the main reason of obesity and many times it results in disturbed lipid and glucose metabolism. Gender is an important factor for the research in obesity and other metabolic diseases because it leads to different fat distribution and the pathophysiology. This study aims to deter...
KARAKURT, SERDAR; Adalı, Orhan (2011-01-01)
Glutathione S-transferase and NAD(P)H: quinone oxidoreductase 1 enzymes have important roles in detoxification and also activation of a wide variety of chemicals. Moreover, resistance of tumor cells against chemotherapeutic agents has been implicated in GST activities. The aim of this study was to investigate the effect of polyphenolic compound tannic acid on rabbit liver and kidney glutathione S-transferase and NAD(P)H: quinone oxidoreductase 1 enzyme activities. Tannic acid was found to be a potent inhibi...
Effect of solvent choice on cellulose acetate membrane fabrication by phase inversion and deacetylation by alkaline hydrolysis
Tekin, Fatma Seden; Çulfaz Emecen, Pınar Zeynep; Department of Chemical Engineering (2022-8)
In this study, the effect of solvent choice on cellulose acetate (CA) membrane morphology and performance was investigated to relate this to the thermodynamics and kinetics of phase inversion. Three different solvent systems were used, which are dimethyl sulfoxide (DMSO), the mixture of DMSO: acetone (DA) and DMSO: acetic acid (DHAc) in the ratio of 1:1. Water was used as non-solvent. Acetone and acetic acid were chosen due to their similar solvent quality for cellulose acetate based on Hansen solubility pa...
Citation Formats
R. Doebler, N. Basaran, H. Goldston, and P. Holloway, “Effect of protein aggregation in the aqueous phase on the binding of membrane proteins to membranes,” BIOPHYSICAL JOURNAL, pp. 928–936, 1999, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67606.