Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Transition from periodic to chaotic oscillations in a planar gas discharge-semiconductor system
Date
2020-06-01
Author
Yuan, Chengxun
Yeşil, Cihan
Yao, Jingfeng
Zhou, Zhongxiang
Rafatov, İsmail
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
1
views
0
downloads
The work studies the transition from periodic to chaotic oscillations in a dc-driven planar gas discharge with a high-ohmic electrode. The applied voltage and resistance of the semiconductor layer act as control parameters. The oscillations occur in the subnormal discharge regime. The bifurcation diagram and Lorenz map characterizing transition of this system to chaos through period-doubling bifurcations are obtained. Numerical models employed are based on the drift-diffusion theory of gas discharges. The effect of two modelling approaches, namely the 'simple' fluid model and the more detailed 'extended' fluid model, is considered. The calculations showed that the results obtained by these two approaches are different in quantitative terms, however, qualitatively similar in terms of the dynamic behavior of the system as a function of the control parameters.
Subject Keywords
Condensed Matter Physics
URI
https://hdl.handle.net/11511/38684
Journal
PLASMA SOURCES SCIENCE & TECHNOLOGY
DOI
https://doi.org/10.1088/1361-6595/ab9155
Collections
Department of Physics, Article