A new model for distributed mems transmission lines

2004-06-26
Topalli, K
Unlu, M
Sagkol, H
Demir, S
Aydın Çivi, Hatice Özlem
Koc, S
Akın, Tayfun
This paper presents a new model for the distributed MEMS transmission line (DMTL) structure where the MEMS bridges that are placed periodically on a high-impedance transmission line are represented as low-impedance transmission lines, rather than a lumped CLR circuit. The model includes LC networks at the transition point from high-impedance to low-impedance lines to account for the effects of discontinuity. The accuracy of the model is verified with measurements on three types of DMTLs that are fabricated with an RF MEMS process based on electroforming on a glass substrate. The DMTLs have MEMS bridges with 100 mum width and interbridge spacings of 100, 200, and 400 mum. The measurement results of the fabricated devices are in good agreement with the model, verifying that modeling of MEMS bridges with transmission lines provides a good approximation for the loss mechanisms in DMTLs when the interbridge spacing approaches to MEMS bridge width.

Suggestions

New approach for modelling distributed MEMS transmission lines
Topalli, K; Unlu, M; Demir, S; Aydın Çivi, Hatice Özlem; Koc, S; Akın, Tayfun (2006-04-01)
The paper presents a new and more accurate model for the distributed MEMS transmission line (DMTL) structures. In this new model, the MEMS bridges that are used as the loading elements of the DMTL structures are represented as low-impedance transmission lines, rather than a lumped CLR circuit. The model also includes LC networks at the transition points from the MEMS bridges to the unloaded parts of the DMTL, which are simply high-impedance transmission lines. These LC networks are employed to model the eff...
A parametric modeling study on distributed MEMS transmission lines
Unlu, M; Topalli, K; Demir, S; Aydın Çivi, Hatice Özlem; Koc, S; Akın, Tayfun (2004-10-14)
This paper presents a parametric study of a new model for the distributed MEMS transmission line (DMTL) structures. In this new model, the MEMS bridges which are used as the loading elements of the DMTL structures are represented as low-impedance transmission lines, rather than a lumped CLR circuit. The model also includes LC networks at the transition points from the MEMS bridges to the unloaded parts of the DMTL which are simply high-impedance transmission lines. These LC networks are employed to model th...
A Detailed Power Loss Analysis of Modular Multilevel Converter
Erturk, Feyzullah; Hava, Ahmet Masum (2015-03-19)
This paper thoroughly examines the semiconductor power loss characteristics of modular multilevel converters (MMC). Power loss behavior is examined under different pulse width modulation (PWM) methods and operating conditions. The effects of stored energy level, circulating current control utilization, power factor and submodule voltage balancing method on power loss are studied. Furthermore, unbalanced power losses and specific semiconductor stresses within a submodule are visualized by investigating the l...
35 GHz phased array antenna using DMTL phase shifters
Guclu, Caner; Cetintepe, Cagri; Aydın Çivi, Hatice Özlem; Demir, Şimşek; Akın, Tayfun (2010-08-27)
This paper presents the design of a monolithic phased array antenna with DMTL phase shifters on quartz substrate operating at 35 GHz. The design integrates DMTL phase shifters, rectangular slot antennas with the feed network comprising CPW lines, CPW T-junction and corners. On the four branches of the antenna, there are 5-bit phase shifters using 31 MEMS bridges, covering 360° with a resolution of 11.25°.
Design and implementation of coupled inductor Cuk converter operating in continuous conduction mode
Ayhan, Mustafa Tufan; Ersak, Aydın; Department of Electrical and Electronics Engineering (2011)
The study involves the following stages: First, coupled-inductor and integrated magnetic structure used in Cuk converter circuit topologies are analyzed and the necessary information about these elements in circuit design is gathered. Also, benefits of using these magnetic elements are presented. Secondly; steady-state model, dynamic model and transfer functions of coupled-inductor Cuk converter topology are obtained via state-space averaging method. Third stage deals with determining the design criteria to...
Citation Formats
K. Topalli et al., “A new model for distributed mems transmission lines,” 2004, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38817.