Dust Effects on Ir(0)(n) Nanoparticle Formation Nucleation and Growth Kinetics and Particle Size-Distributions: Analysis by and Insights from Mechanism-Enabled Population Balance Modeling

Handwerk, Derek R.
Shipman, Patrick D.
Özkar, Saim
Finke, Richard G.
The effects of microfiltration removal of filterable dust on nanoparticle formation kinetics and particle-size distribution, in a polyoxometalate polyanion (P2W15Nb3O629-)-stabilized Ir(0)(n) nanoparticle formation system, are analyzed by the newly developed method of Mechanism-Enabled Population Balance Modeling (ME-PBM). The [(Bu4N)(5)Na-3(1,5-COD)Ir center dot P2W15Nb3O62] precatalyst system produces on average Ir(0)(similar to 200) nanoparticles of 1.74 +/- 0.33 nm and hence a particle-size distribution (PSD) of +/- 19% dispersion when the precatalyst is reduced under H-2 in unfiltered propylene carbonate solvent. But if the precatalyst is reduced in microfiltered solvent and microfiltered reagent solutions (where the filtered solvent is then also used to rinse dust from the glassware), then larger Ir(0)(similar to 300) 1.96 +/- 0.16 nm nanoparticles are produced with a remarkable, 2.4-fold lowered +/- 8% dispersion. The results and effects of the microfiltration reduction of dust are analyzed by the newly developed method of ME-PBM. More specifically, the studies reported herein address eight outstanding questions that are listed in the Introduction. Those questions include: how easy or difficult it is to fit PSD data? What is the ability of the recently discovered alternative termolecular nucleation and two size-dependent growth steps mechanism to account for the effects of dust on the PSD? What types and amount of PSD kinetics data are needed to deconvolute the PSD into the parameters of the ME-PBM? What is the reliability of the resulting rate constants? Additional questions addressed include: if the ME-PBM results offer insights into the remarkable 2.4-fold narrowing of the PSD post simple microfiltration lowering of the dust, and if the results are likely to be more general? The Summary and Conclusions section lists nine specific insights that include comments on needed future studies.


Robust Covalent Coupling Scheme for the Development of FRET Aptasensor based on Amino-Silane-Modified Graphene Oxide
Kahyaoğlu, Leyla Nesrin (American Chemical Society (ACS), 2018-12-04)
In recent years, numerous aptamers have been physisorbed on graphene oxide (GO) to develop fluorescence resonance energy transfer-based aptasensors using the fluorescence quenching property of GO. However, physisorbed aptasensors show poor signal reversibility and reproducibility as well as nonspecific probe displacement, and thereby are not suitable for many analytical applications. To overcome these problems when working with complex biological samples, we developed a facile and robust covalent surface fu...
Amphoteric surface hydrogels derived from hydrogen-bonded multilayers: Reversible loading of dyes and macromolecules
Kharlampieva, Eugenia; Erel Göktepe, İrem; Sukhishvili, Svetlana A. (American Chemical Society (ACS), 2007-01-02)
We used hydrogen-bonded multilayers of poly(N-vinylpyrrolidone) (PVPON) and poly(methacrylic acid) (PMAA) as precursors for producing surface-bound hydrogels and studied their pH-dependent swelling and protein uptake behavior using in situ attenuated total reflection Fourier transform infrared spectroscopy and in situ ellipsometry. The hydrogels were produced by selective chemical cross-linking between PMAA units using carbodiimide chemistry and ethylenediamine (EDA) as a cross-linking reagent, followed by ...
Industrial Ziegler-Type Hydrogenation Catalysts Made from Co(neodecanoate)(2) or Ni(2-ethylhexanoate)(2) and AlEt3: Evidence for Nanoclusters and Sub-Nanocluster or Larger Ziegler-Nanocluster Based Catalysis
Alley, William M.; Hamdemir, Isil K.; Wang, Qi; Frenkel, Anatoly I.; Li, Long; Yang, Judith C.; Menard, Laurent D.; Nuzzo, Ralph G.; Özkar, Saim; Yih, Kuang-Hway; Johnson, Kimberly A.; Finke, Richard G. (American Chemical Society (ACS), 2011-05-17)
Ziegler-type hydrogenation catalysts are important for industrial processes, namely, the large-scale selective hydrogenation of styrenic block copolymers. Ziegler-type hydrogenation catalysts are composed of a group 8-10 transition metal precatalyst plus an alkylaluminum cocatalyst (and they are not the same as Ziegler-Natta polymerization catalysts). However, for similar to 50 years two unsettled issues central to Ziegler-type hydrogenation catalysis are the nature of the metal species present after cataly...
Palladium(0) Nanoparticle Formation, Stabilization, and Mechanistic Studies: Pd(acac)(2) as a Preferred Precursor, [Bu4N](2)HPO4 Stabilizer, plus the Stoichiometry, Kinetics, and Minimal, Four-Step Mechanism of the Palladium Nanoparticle Formation and Subsequent Agglomeration Reactions
Özkar, Saim (American Chemical Society (ACS), 2016-04-19)
Palladium(0) nanoparticles continue to be important in the field of catalysis. However, and despite the many prior reports of Pd(0)(n) nanoparticles,, missing is a study that reports the kinetically controlled formation of Pd(0)(n) nanoparticles with the simple stabilizer [Bu4N](2)HPO4 in an established, balanced formation reaction where the kinetics and mechanism of the nanoparticle-formation reaction are also provided. It is just such studies that are the focus of the present work. Specifically, the prese...
Active Janus Particles at Interfaces of Liquid Crystals
Mangal, Rahul; Nayani, Karthik; Kim, Young-Ki; Büküşoğlu, Emre; Cordova-Figueroa, Ubaldo M.; Abbott, Nicholas. L. (American Chemical Society (ACS), 2017-10-17)
We report an investigation of the active motion of silica palladium Janus particles (JPs) adsorbed at interfaces formed between nematic liquid crystals (LCs) and aqueous phases containing hydrogen peroxide (H2O2). In comparison to isotropic oil aqueous interfaces, we observe the elasticity and anisotropic viscosity of the nematic phase to change qualitatively the active motion of the JPs at the LC interfaces. Although contact line pinning on the surface of the JPs is observed. to restrict out-of-plane rotat...
Citation Formats
D. R. Handwerk, P. D. Shipman, S. Özkar, and R. G. Finke, “Dust Effects on Ir(0)(n) Nanoparticle Formation Nucleation and Growth Kinetics and Particle Size-Distributions: Analysis by and Insights from Mechanism-Enabled Population Balance Modeling,” LANGMUIR, pp. 1496–1506, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38828.