Event detection in automated surveillance systems

2006-01-01
Orten, B. Birant
Alatan, Abdullah Aydın
Ciloglu, Tolga
Event recognition is probably the ultimate purpose of an automated surveillance system. In this paper, hidden Markov models (HMM) are utilized to recognize the nature of an event occurring in a scene. For this purpose, object trajectories, which are obtained through a successful track, are written as a sequence of flow vectors that contain instantaneous velocity and location information. These vectors are clustered by K-means algorithm to obtain a prototype representation. HMMs are trained with sequences obtained from usual motion patterns and abnormality is detected by measuring distances to these models. In order to specify the number of models without user interaction, a novel. approach is proposed in which the clues provided by centroid clustering are utilized. Promising simulation results are obtained for this approach, which is. applicable to any surveillance application.

Suggestions

Recognizing events in an automated surveillance system
Orten, Birant; Alatan, Abdullah Aydın; Çiloğlu, Tolga (2006-01-01)
Event recognition is probably the ultimate purpose of an automated surveillance system. In this paper, hidden Markov models (HMM) are utilized to recognize the nature of an event occurring in a scene. For this purpose, object trajectories, which are obtained through a successful track, are obtained as a sequence of flow vectors that contain instantaneous velocity and location information. These vectors are clustered by K-means algorithm to obtain a prototype representation. HMMs are trained with sequences o...
Security Attacks and Countermeasures in Surveillance Wireless Sensor Networks
Sert, Seyyit Alper; Onur, Ertan; Yazıcı, Adnan (2015-10-16)
Surveillance has always been an important task for human beings either for protecting a precious asset or gathering information from the surrounding environment. However, things to be monitored are increasing with a huge rate due to the changing requirements day by day. As a result, it becomes nearly impossible for individuals to do this task manually. To be able to fulfill such requirements, Surveillance Wireless Sensor Networks (SWSNs) have emerged. An SWSN is comprised of tiny nodes geared with various s...
Object tracking system with seamless object handover between stationary and moving camera modes
Emeksiz, Deniz; Temizel, Alptekin; Department of Information Systems (2012)
As the number of surveillance cameras and mobile platforms with cameras increases, automated detection and tracking of objects on these systems gain importance. There are various tracking methods designed for stationary or moving cameras. For stationary cameras, correspondence based tracking methods along with background subtraction have various advantages such as enabling detection of object entry and exit in a scene. They also provide robust tracking when the camera is static. However, they fail when the ...
Automated crowd behavior analysis for video surveillance applications
Güler, Püren; Temizel, Alptekin; Taşkaya Temizel, Tuğba; Department of Information Systems (2012)
Automated analysis of a crowd behavior using surveillance videos is an important issue for public security, as it allows detection of dangerous crowds and where they are headed. Computer vision based crowd analysis algorithms can be divided into three groups; people counting, people tracking and crowd behavior analysis. In this thesis, the behavior understanding will be used for crowd behavior analysis. In the literature, there are two types of approaches for behavior understanding problem: analyzing behavi...
Local Anomaly Detection in Crowded Scenes Using Finite-Time Lyapunov Exponent Based Clustering
Öngün, Cihan; Temizel, Alptekin; Taşkaya Temizel, Tuğba (2014-08-29)
Surveillance of crowded public spaces and detection of anomalies from the video is important for public safety and security. While anomaly detection is possible by detection and tracking of individuals in low-density areas, such methods are not reliable in high-density crowded scenes. In this work we propose a holistic unsupervised approach to cluster different behaviors in high density crowds and detect the local anomalies using these clusters. Finite-Time Lyapunov Exponents (FTLE) is used for analyzing th...
Citation Formats
B. B. Orten, A. A. Alatan, and T. Ciloglu, “Event detection in automated surveillance systems,” 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38838.