Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Improving forecasting accuracy of time series data using a new ARIMA-ANN hybrid method and empirical mode decomposition
Download
index.pdf
Date
2019-10-07
Author
Buyuksahin, Umit Cavus
Ertekin Bolelli, Şeyda
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
4
views
2
downloads
Many applications in different domains produce large amount of time series data. Making accurate forecasting is critical for many decision makers. Various time series forecasting methods exist that use linear and nonlinear models separately or combination of both. Studies show that combining of linear and nonlinear models can be effective to improve forecasting performance. However, some assumptions that those existing methods make, might restrict their performance in certain situations. We provide a new Autoregressive Integrated Moving Average (ARIMA)-Artificial Neural Network (ANN) hybrid method that work in a more general framework. Experimental results show that strategies for decomposing the original data and for combining linear and nonlinear models throughout the hybridization process are key factors in the forecasting performance of the methods. By using these findings, the proposed hybrid method is combined with Empirical Mode Decomposition (EMD) technique which generates more predictable components. We show that our hybrid method with EMD can be an effective way to improve forecasting accuracy obtained by traditional hybrid methods and also any of the individual methods that we used separately.
Subject Keywords
Cognitive Neuroscience
,
Artificial Intelligence
,
Computer Science Applications
URI
https://hdl.handle.net/11511/43038
Journal
NEUROCOMPUTING
DOI
https://doi.org/10.1016/j.neucom.2019.05.099
Collections
Department of Computer Engineering, Article