Titania, zirconia and hafnia supported ruthenium(0) nanoparticles: Highly active hydrogen evolution catalysts

2018-12-01
Designing a cost-effective catalyst with high activity and stability for hydrogen evolution reaction (2H(+) + 2e(-) -> H-2) is a big challenge due to increasing demand for energy. Herein, we report the electrocatalytic activity of glassy carbon electrodes with group 4 metal oxides (TiO2, ZrO2, HfO2) supported ruthenium(0) nanoparticles in hydrogen evolution reaction. Electrochemical activity of modified electrodes is investigated by recording linear sweep voltammograms in 0.5 M H2SO4 solution. The results of electrochemical measurements reveal that among the three electrodes the glassy carbon electrode with Ruci/TiO2 (1.20% wt. Ru) exhibits the highest activity with a relatively small Tafel slope of 52 mV dec(-1), the highest exchange current density of 0.728 mA cm(-2), and the smallest overpotential of 41 mV at j = 10 mA cm(-2). Furthermore, it demonstrates superior stability in acidic solution with an unaltered onset potential for long term electrochemical measurement.
JOURNAL OF COLLOID AND INTERFACE SCIENCE

Suggestions

Magnetically separable rhodium nanoparticles as catalysts for releasing hydrogen from the hydrolysis of ammonia borane
Tonbul, Yalcin; Akbayrak, Serdar; Özkar, Saim (Elsevier BV, 2019-10-01)
Magnetically separable catalysts attract considerable attention in catalysis due to their facile separation from the reaction medium. This propensity is crucial for efficient multiple use of precious noble metal nanoparticles in catalysis. In fact, the isolation of catalysts from the reaction medium by filtration and washing results usually in the loss of huge amount of activity in the subsequent run of catalysis. Although many transition metal nanoparticle catalysts have been reported for the H-2 generatio...
Nickel(0) nanoparticles supported on bare or coated cobalt ferrite as highly active, magnetically isolable and reusable catalyst for hydrolytic dehydrogenation of ammonia borane
Manna, Joydev; AKBAYRAK, SERDAR; Özkar, Saim (Elsevier BV, 2017-12-15)
Nickel(0) nanoparticles supported on cobalt ferrite (Ni-0/CoFe2O4), polydopamine coated cobalt ferrite (NP0/PDA-CoFe2O4) or silica coated cobalt ferrite (NP0/SiO2-CoFe2O4) are prepared and used as catalysts in hydrogen generation from the hydrolysis of ammonia borane at room temperature. Ni-0/CoFe2O4 (4.0% wt. Ni) shows the highest catalytic activity with a TOF value of 38.3 min(-1) in hydrogen generation from the hydrolysis of ammonia borane at 25.0 +/- 0.1 degrees C. However, the initial catalytic activit...
Voltammetric and drift spectroscopy investigation in dithiophosphinate-chalcopyrite system
Guler, T; Hicyilmaz, C; Gokagac, G; Ekmekci, Z (Elsevier BV, 2004-11-01)
The mechanism of dithiophosphinate (DTPI) adsorption on chalcopyrite was investigated by diffuse reflectance Fourier transformation (DRIFT) spectroscopy and by cyclic voltammetry (CV) at various pHs. CV experiments showed that the redox reactions occurred at a certain degree of irreversibility on the chalcopyrite surface in the absence of a collector due to preferential dissolution of iron ions in slightly acid solution and irreversible surface coverage by iron oxyhydroxides in neutral and alkaline solution...
Sodium, ammonium, calcium, and magnesium forms of zeolite Y for the adsorption of glucose and fructose from aqueous solutions
Heper, Misket; Türker, Burhan Lemi; Kincal, N. Suzan (Elsevier BV, 2007-02-01)
The kinetics of adsorption by sodium, ammonium, calcium and magnesium forms of zeolite Y from aqueous solutions containing 25% w/v of either one or an equimolar mixture of glucose (G) and fructose (F) have been studied batch-wise at 50 degrees C. The adsorption of aqueous pure G was fast, while that of aqueous pure F depended on the cationic form, approaching that of G on the Mg-Y, and slowing down in the sequence of Mg2+ > NH4+ > Ca-2(+) > Na+ of the cations. The adsorption behavior from solutions containi...
Nanoparticle Formation Kinetics and Mechanistic Studies Important to Mechanism-Based Particle-Size Control: Evidence for Ligand-Based Slowing of the Autocatalytic Surface Growth Step Plus Postulated Mechanisms
Özkar, Saim (American Chemical Society (ACS), 2019-06-06)
Ligands are known to affect the formation, stabilization, size, and size-dispersion control of transition-metal and other nanoparticles, yet the kinetic and mechanistic basis for such ligand effects remains to be elucidated and then coupled to predictions for improved particle size and narrower particle size distribution syntheses. Toward this broad goal, the effect of the added excess ligand (L) and the stabilizer, L = POM9- (= the polyoxometalate, P2W15Nb3O629-) is studied for the formation of POM9--stabi...
Citation Formats
E. Demir Arabacı, A. M. Önal, and S. Özkar, “Titania, zirconia and hafnia supported ruthenium(0) nanoparticles: Highly active hydrogen evolution catalysts,” JOURNAL OF COLLOID AND INTERFACE SCIENCE, pp. 570–577, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38935.