Effects of cast-in-place concrete topping on flexural response of precast concrete hollow-core slabs

2015-09-01
Results of a study focusing on the flexural response of precast prestressed concrete hollow-core slabs with cast-in-place concrete topping are presented. The experimental part of the study included load testing of five precast concrete hollow-core units. The numerically determined flexural response of test specimens was later compared with the experimentally obtained behavior. Results demonstrate that a major composite action is valid between the hollow-core unit and the topping slab under load levels corresponding to uncracked state of the cross section. Existence of a topping slab resulted in improvements in the cracking moment and initial stiffness of hollow-core units. The beneficial effect of topping slab on the ultimate moment capacity was observed to be limited, mainly because of the loss of composite action prior to reaching the ultimate moment capacity. Horizontal shear strength at the interface between hollow-core unit and topping slab was determined (1) through limited number of pushoff load tests and (2) through calculations considering the load level corresponding to initiation of significant relative slip using the basic mechanics of materials approach and the simplified code expression. The measured and computed interface shear strength values were observed to be significantly lower than the horizontal shear strength values specified by the ACI and AASHTO Specifications.
ENGINEERING STRUCTURES

Suggestions

Influence of the shear wall area to floor area ratio on the seismic performance of existing reinforced concrete buildings
Günel, Ahmet Orhun; Burak Bakır, Burcu; Department of Civil Engineering (2013)
An analytical study is performed to evaluate the influence of shear wall area to floor area ratio on the behavior of existing mid-rise reinforced concrete buildings under earthquake loading. The seismic performance of five existing school buildings with shear wall ratios between 0.00% and 2.50% in both longitudinal and transverse directions and their strengthened counterparts are evaluated. Based on the structural properties of the existing buildings, additional buildings with varying shear wall ratios are ...
Effect of introducing RC infill on seismic performance of damaged RC frames
Turk, AM; Ersoy, U; Ozcebe, G (2006-07-30)
The main objective of this study was to investigate the seismic behavior of damaged reinforced concrete frames rehabilitated by introducing cast in place reinforced concrete infills. Four bare and five infilled frames were constructed and tested. Each specimen consisted of two (twin) 1/3-scale, one-bay and two-story reinforced concrete frames. Test specimens were tested under reversed-cyclic lateral loading until considerable damage occurred. RC infills were then introduced to the damaged specimens. One bar...
Effect of girder spacing on the construction cost and seismic performance of slab-on-prestressed concrete girder highway bridges
Duran, Burak Çağrı; Dicleli, Murat; Department of Engineering Sciences (2020)
This study examines the effect of using different girder spacing on the total bridge construction cost in varied seismic zones. For this purpose, a number of structural models are built utilizing the finite element analysis to study the superstructure and substructure of a benchmark bridge in detail. Using these models, related parametric analyses are conducted for altering girder spacing, span lengths, number of spans, column heights, soil types and seismic zones. Ninety-five bridges with distinct types of...
Effect of alkali-silica reaction expansion on mechanical properties of concrete
Hafçı, Alkan; Turanlı, Lütfullah; Department of Civil Engineering (2013)
Alkali-silica reaction (ASR) is a chemical deterioration process which arises in concrete due to reactive aggregate from its constituent, sufficient alkalis from cement or external resources and humidity about 85%. ASR gel, formed by the reaction, absorbs water and expands so that it causes expansion and cracking in concrete. ASR has detrimental effects on mechanical properties of concrete. Therefore, ASR which is a long and a constantly progressive reaction may become a threat to the safety of concrete str...
Effect of Synthetic Fibers on Energy Absorption Capacity of Normal and High Performance Concrete
Şengün, Emin; Alam, Burhan; Yaman, İsmail Özgür (null; 2016-06-08)
With the increasing aim of incorporating concrete in different applications and infrastructure elements, the use of macro synthetic fiber incorporated concretes has become real popular thanks to their high energy absorption capacity, toughness and impact resistance. The aim of this study is to investigate the effects of synthetic fibers on toughness and energy absorption of normal and high performance concretes. For this experimental study, eight concrete groups were designed using synthetic fibers of vario...
Citation Formats
E. Baran, “Effects of cast-in-place concrete topping on flexural response of precast concrete hollow-core slabs,” ENGINEERING STRUCTURES, pp. 109–117, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38994.