Preparation and labeling of surface-modified magnetoferritin protein cages with a rhenium(I) carbonyl complex for magnetically targeted radiotherapy

2016-01-01
Aslan, Tugba Nur
Asik, Elif
Volkan, Mürvet
New rhenium radiolabeled compounds are of general interest due to their nuclear characteristics which allow radiotherapy and in situ monitoring of tumor uptake. Biocompatible magnetic nanoparticles capable of transporting radionuclides, providing MRI contrast agent properties for imaging and a therapeutic effect in the target tissue simultaneously, are highly desirable. Herein we describe the preparation of magnetoferritin samples, and their labeling with rhenium in the form of the low oxidation state rhenium(I)-tricarbonyl complex, [Re(CO)(3)(H2O)(3)](+). A non-radioactive rhenium isotope (Re-187) was used in all studies. The rhenium complex was conjugated covalently to the surface lysine groups of the protein cage via glutaraldehyde crosslinker and histidine modification. The analyses of conjugates were performed by inductively coupled plasma mass spectroscopy (ICP-MS) and size exclusion chromatography (SEC). Labeling efficiency was calculated as 22 +/- 2 rhenium per protein cage. The in vitro stability of the rhenium carbonyl label was evaluated at room temperature and in human serum medium. It was found that 91.1 +/- 1.8% rhenium was retained on the surface of the magnetoferritin cage following 72 h of dialysis. Prussian blue staining revealed the uptake of rhenium labeled nanocages preferentially into the human breast metastatic adenocarcinoma, MDA-MB-231 cells lines. The cytotoxicity assay carried out with the same cell lines showed that there is no significant cytotoxic effect up to 72 hours of incubation with 1 mg of labeled nanocages per mL (IC50 value).
RSC ADVANCES

Suggestions

Synthesis of alpha-Fe2O3/TiO2 heterogeneous composites by the sol-gel process and their photocatalytic activity
Bouziani, Asmae; PARK, JONGEE; Öztürk, Abdullah (Elsevier BV, 2020-09-01)
alpha-Fe2O3/TiO2 heterogeneous composites were synthesized by the sol-gel process to increase the photocatalytic activity of TiO2. The structural, morphological, and optical characteristics of the composites were determined by X-ray diffraction, scanning electron microscope, and UV-vis diffuse reflectance spectroscopy. Results revealed that the incorporation of alpha-Fe2O3 to TiO2 widened the visible light absorption ability of TiO2. It was realized that the calcination temperature plays a crucial role in m...
Synthesis and electrochemical polymerization of D-A-D type monomers with thieno [3,4-c] pyrrole-4,6-dione acceptor unit
Çakal, Deniz; Cihaner, Atilla; Önal, Ahmet Muhtar (Elsevier BV, 2018-11-01)
In this study, three new donor-acceptor-donor type monomers bearing 1,3-dibromo-5-(2-ethylhexyl)-4H-thieno [3,4-c]pyrrole- 4,6(5H)-dione (A) as an acceptor unit and thiophene, 3,4-ethylenedioxythiophene (EDOT) and 3,3-didecy1-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine (didecyl-ProDOT) as donor units were synthesized via Stille cross-coupling reaction and their electrochemical polymerization by repetitive cycling was reported. The electrochemical and optical properties of the monomers ((5-(2-ethyl-liexyl)-1,...
Calculation of Detonation Properties of Gaseous Explosives Using Generalized Reduced Gradient Nonlinear Optimization
Ulaş, Abdullah (Wiley, 2011-08-01)
In this paper, a study on the development of a numerical modeling of the detonation of C-H-N-O-based gaseous explosives is presented. In accordance with the numerical model, a FORTRAN computer code named GasPX has been developed to compute both the detonation point and the detonation properties on the basis of Chapman-Jouguet (C-J) theory. The determination of the detonation properties in GasPX is performed in chemical equilibrium and steady-state conditions. GasPX has two improvements over other thermodyna...
Characterization of BPN Pyrotechnic Composition Containing Micro- and Nanometer-Sized Boron Particles
Koc, Suzan; Ulaş, Abdullah; Yilmaz, Nil Ezgi (Wiley, 2015-10-01)
The effect of micro- and nanometer-sized boron particles on boron-potassium nitrate (BPN) ignition composition was investigated in this paper. As a starting point, thermochemical calculations were made to determine the most promising ignition compositions. Both stoichiometric and fuel-rich formulations of BPN were produced to observe the performance variation due to boron content. Particle morphology of boron particles and the surface structure of the ignition compositions were investigated by SEM. The infl...
DEPENDENCY OF NANOFLUID RHEOLOGY ON PARTICLE SIZE AND CONCENTRATION OF VARIOUS METAL OXIDE NANOPARTICLES
YAPICI, Kerim; Osturk, Ozge; Uludağ, Yusuf (FapUNIFESP (SciELO), 2018-04-01)
Impact of the nanoparticle size and concentration on the rheology of ethylene glycol based nanofluids containing nanoparticles of five different metal oxides is investigated. Particle mass concentrations ranged from 5 to 20 wt %. Types of the nanoparticles and their particle size are TiO2 (30 nm, 50 nm), MgO (20 nm, 40 nm), ZnO (10-30 nm, 35-45 nm, 80-200 nm), SiO2 (20-30 nm, 60-70 nm) and CuO (40 nm, 80 nm). A stress controlled rheometer fitted with a cone-and-plate system is employed for the rheological c...
Citation Formats
T. N. Aslan, E. Asik, and M. Volkan, “Preparation and labeling of surface-modified magnetoferritin protein cages with a rhenium(I) carbonyl complex for magnetically targeted radiotherapy,” RSC ADVANCES, pp. 8860–8869, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39007.