Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Characterization of BPN Pyrotechnic Composition Containing Micro- and Nanometer-Sized Boron Particles
Date
2015-10-01
Author
Koc, Suzan
Ulaş, Abdullah
Yilmaz, Nil Ezgi
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
291
views
0
downloads
Cite This
The effect of micro- and nanometer-sized boron particles on boron-potassium nitrate (BPN) ignition composition was investigated in this paper. As a starting point, thermochemical calculations were made to determine the most promising ignition compositions. Both stoichiometric and fuel-rich formulations of BPN were produced to observe the performance variation due to boron content. Particle morphology of boron particles and the surface structure of the ignition compositions were investigated by SEM. The influence of micro- and nanometer-sized boron particles on the calorific value, sensitivity properties, and pressure buildup of compositions were investigated. Sensitivity tests showed that all compositions were safe enough for handling. It was seen that although nanometer-sized boron particles enhanced calorific value and pressurization rate, they did not have a contribution on the maximum pressure level. The maximum adiabatic flame temperature was attained by the stoichiometric composition, but in practice, the stoichiometric composition resulted in much lower performance than the fuel rich composition. Possible reasons for these behaviors of the compositions were discussed in the paper.
Subject Keywords
General Chemistry
,
General Chemical Engineering
URI
https://hdl.handle.net/11511/45935
Journal
PROPELLANTS EXPLOSIVES PYROTECHNICS
DOI
https://doi.org/10.1002/prep.201400255
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Calculation of Detonation Properties of Gaseous Explosives Using Generalized Reduced Gradient Nonlinear Optimization
Ulaş, Abdullah (Wiley, 2011-08-01)
In this paper, a study on the development of a numerical modeling of the detonation of C-H-N-O-based gaseous explosives is presented. In accordance with the numerical model, a FORTRAN computer code named GasPX has been developed to compute both the detonation point and the detonation properties on the basis of Chapman-Jouguet (C-J) theory. The determination of the detonation properties in GasPX is performed in chemical equilibrium and steady-state conditions. GasPX has two improvements over other thermodyna...
Synthesis and Characterization of Aluminum Containing Silica Aerogel Catalysts for Degradation of PLA
Sivri, Seda; Dilek Hacıhabiboğlu, Çerağ; Sezgi, Naime Aslı (Walter de Gruyter GmbH, 2019-05-01)
Aluminum loaded silica aerogel based catalysts were synthesized by impregnation of aluminum into silica aerogel produced using sol-gel method in different aluminum loadings (2.5-15 wt%) to investigate their performances in degradation of polylactic acid (PLA).
Comparison of Fenitrothion and Trifluralin Adsorption on Organo-Zeolites and Activated Carbon. Part II: Thermodynamic Parameters and the Suitability of the Kinetic Models of Pesticide Adsorption
LÜLE ŞENÖZ, Güzide Meltem; Atalay, Mustafa Ümit (Informa UK Limited, 2014-07-04)
The suitability of two kinetic models and the thermodynamic parameters of pesticide adsorption were investigated based on obtained data of previous studies. Kinetic evaluation indicated that the pesticides adsorption on adsorbents followed the pseudo-second-order model. Gibbs free energy (Delta G degrees), enthalpy (Delta H degrees), and entropy (Delta S degrees) were calculated for thermodynamic parameters by using linearized Arrhenius equation. The results indicated that the sorption process of fenitrothi...
Vulcan-Supported Pt Electrocatalysts for PEMFCs Prepared using Supercritical Carbon Dioxide Deposition
Bayrakceken, Ayse; Smirnova, Alevtina; Kitkamthorn, Usanee; Aindow, Mark; Tuerker, Lemi; Eroğlu, İnci; ERKEY, CAN (Informa UK Limited, 2009-01-01)
In this study, supercritical carbon dioxide (scCO(2)) deposition was used to prepare vulcan-supported Pt (Pt/Vulcan) electrocatalysts for proton exchange membrane fuel cells (PEMFCs), and the effects of process variables on the properties of the electrocatalysts were investigated. The two different methods used to reduce the organometallic precursor were thermal reduction in nitrogen at atmospheric pressure and thermal reduction in scCO(2). In the former method, the maximum Pt loading achieved was 9%, and t...
Effects of pH, Initiator, Scavenger, and Surfactant on the Ozonation Mechanism of an Azo Dye (Acid Red-151) in a Batch Reactor
Oezbelge, Tuelay A.; Erol, Funda (Informa UK Limited, 2009-01-01)
In this study, an initiator (Fe2+) and a scavenger (CO32(-)) were used at different concentrations in a batch reactor to investigate the reaction mechanism of ozonation of a model azo dye, namely Acid Red-151 (AR-151). Also, the effect of a nonionic surfactant known as a major pollutant in many industrial wastewaters, namely polyethylene glycol (PEG), was observed on the degradation rate of AR-151. The experimental parameters and their ranges were: pH (2.5-10), initiator (0.8-50mg/L of Fe2+), surfactant (10...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Koc, A. Ulaş, and N. E. Yilmaz, “Characterization of BPN Pyrotechnic Composition Containing Micro- and Nanometer-Sized Boron Particles,”
PROPELLANTS EXPLOSIVES PYROTECHNICS
, pp. 735–742, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/45935.