AdS-plane wave and pp-wave solutions of generic gravity theories

Download
2014-12-02
GÜRSES, METİN
Sisman, Tahsin Cagri
Tekin, Bayram
We construct the anti-de Sitter-plane wave solutions of generic gravity theory built on the arbitrary powers of the Riemann tensor and its derivatives in analogy with the pp-wave solutions. In constructing the wave solutions of the generic theory, we show that the most general two-tensor built from the Riemann tensor and its derivatives can be written in terms of the traceless Ricci tensor. Quadratic gravity theory plays a major role; therefore, we revisit the wave solutions in this theory. As examples of our general formalism, we work out the six-dimensional conformal gravity and its nonconformal deformation as well as the tricritical gravity, the Lanczos-Lovelock theory, and string-generated cubic curvature theory.
PHYSICAL REVIEW D

Suggestions

Scalar waves in spacetimes with closed timelike curves
Buğdaycı, Necmi; Başkal, Sibel; Department of Physics (2005)
The existence and -if exists- the nature of the solutions of the scalar wave equation in spacetimes with closed timelike curves are investigated. The general properties of the solutions on some class of spacetimes are obtained. Global monochromatic solutions of the scalar wave equation are obtained in flat wormholes of dimensions 2+1 and 3+1. The solutions are in the form of infinite series involving cylindirical and spherical wave functions and they are elucidated by the multiple scattering method. Explici...
EXACT SPIN AND PSEUDO-SPIN SYMMETRIC SOLUTIONS OF THE DIRAC-KRATZER PROBLEM WITH A TENSOR POTENTIAL VIA LAPLACE TRANSFORM APPROACH
Arda, Altug; Sever, Ramazan (2012-09-28)
Exact bound state solutions of the Dirac equation for the Kratzer potential in the presence of a tensor potential are studied by using the Laplace transform approach for the cases of spin- and pseudo-spin symmetry. The energy spectrum is obtained in the closed form for the relativistic as well as non-relativistic cases including the Coulomb potential. It is seen that our analytical results are in agreement with the ones given in the literature. The numerical results are also given in a table for different p...
PATH-INTEGRAL FOR SPIN - A NEW APPROACH
Alıyev, Tahmasıb; PAK, NK (1994-10-31)
The path integral representation for the propagator of a Dirac particle in an external electromagnetic field is derived using the functional derivative formalism with the help of Weyl symbol representation for the Grassmann vector part of the variables. The proposed method simplifies the proof of the path integral representation starting from the equation for the Green function significantly and automatically leads to a precise and unambiguous set of boundary conditions for the anticommuting variables and p...
Galois structure of modular forms of even weight
Gurel, E. (Elsevier BV, 2009-10-01)
We calculate the equivariant Euler characteristics of powers of the canonical sheaf on certain modular curves over Z which have a tame action of a finite abelian group. As a consequence, we obtain information on the Galois module structure of modular forms of even weight having Fourier coefficients in certain ideals of rings of cyclotomic algebraic integers. (c) 2009 Elsevier Inc. All rights reserved.
Pseudospin and spin symmetry in the Dirac equation with Woods-Saxon potential and tensor potential
AYDOĞDU, OKTAY; Sever, Ramazan (2010-01-01)
The Dirac equation is solved approximately for the Woods-Saxon potential and a tensor potential with the arbitrary spin-orbit coupling quantum number kappa under pseudospin and spin symmetry. The energy eigenvalues and the Dirac spinors are obtained in terms of hypergeometric functions. The energy eigenvalues are calculated numerically.
Citation Formats
M. GÜRSES, T. C. Sisman, and B. Tekin, “AdS-plane wave and pp-wave solutions of generic gravity theories,” PHYSICAL REVIEW D, pp. 0–0, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39030.