Hide/Show Apps

AdS-plane wave and pp-wave solutions of generic gravity theories

Sisman, Tahsin Cagri
Tekin, Bayram
We construct the anti-de Sitter-plane wave solutions of generic gravity theory built on the arbitrary powers of the Riemann tensor and its derivatives in analogy with the pp-wave solutions. In constructing the wave solutions of the generic theory, we show that the most general two-tensor built from the Riemann tensor and its derivatives can be written in terms of the traceless Ricci tensor. Quadratic gravity theory plays a major role; therefore, we revisit the wave solutions in this theory. As examples of our general formalism, we work out the six-dimensional conformal gravity and its nonconformal deformation as well as the tricritical gravity, the Lanczos-Lovelock theory, and string-generated cubic curvature theory.