# Dual reciprocity boundary element method for magnetohydrodynamic flow using radial basis functions

2002-02-01
A dual reciprocity boundary element method is given to obtain the solution in terms of velocity and induced magnetic field for the study of MHD (magnetohydrodynamic) flow through a rectangular duct having insulating walls. The equations are transformed to two types of nonlinear Poisson equations and the right-hand sides in these equations are approximated using combinations of two classes of radial basis functions (the value of the function and its normal derivatives are utilized for approximation). Computations are carried out for several values of the Hartman number (0 less than or equal to M less than or equal to 10) by using constant boundary elements. Comparisons are made for two types of formulations and for traditional and osculatory type approximations of the right-hand side functions. It is found that osculatory interpolation gives better results than traditional interpolation and the type of the Poisson equation, which contains derivative of the unknown function, is better than the other type, which contains unknown function only. The results for velocity and induced magnetic field are illustrated by some selected graphs.
INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS

# Suggestions

 Numerical solution of magnetohydrodynamic flow problems using the boundary element method Tezer, Münevver (2005-03-18) A boundary element solution is given for a magnetohydrodynamic (MHD) flow problem in a rectangular duct having insulating walls, in terms of velocity and induced magnetic field. The coupled velocity and magnetic field equations are first transformed into decoupled nonhomogeneous convection-diffusion type equations and then finding particular solutions, the homogeneous equations are solved using the boundary element method (BEM). The fundamental solutions of the decoupled homogeneous equations themselves are...
 Least squares differential quadrature time integration scheme in the dual reciprocity boundary element method solution of convection-diffusion problems Bozkaya, Canan (2005-03-18) The least squares differential quadrature method (DQM) is used for solving the ordinary differential equations in time, obtained from the application of the dual reciprocity boundary element method (DRBEM) for the spatial partial derivatives in convection-diffusion type problems. The DRBEM enables us to use the fundamental solution of the Laplace equation which is easy to implement computationally. The time derivative and the convection terms are considered as the nonhomogeneity in the equation which are ap...
 Solution of the nonlinear diffusion equation using the dual reciprocity boundary element method and the relaxation type time integration scheme Meral, G (2005-03-18) We present the combined application of the dual reciprocity boundary element method (DRBEM) and the finite difference method (FDM) with a relaxation parameter to the nonlinear diffusion equation: partial derivative u/partial derivative t = V del(2)u + p(u) at where p(u) is the nonlinear term. The DRBEM is employed to discretize the spatial partial derivatives by using the fundamental solution of the Laplace operator, keeping the time derivative and the nonlinearity as the nonhomogeneous terms in the equatio...
 NUMERICAL STABILITY OF RBF APPROXIMATION FOR UNSTEADY MHD FLOW EQUATIONS Gurbuz, Merve; Tezer, Münevver (2019-01-01) In this study, the radial basis function (RBF) approximation is applied for solving the unsteady fluid flow and magnetohydrodynamic (MHD) convection flow problems with the use of explicit Euler time discretization and relaxation parameters to accelerate the convergence. The stability analysis is also carried out in terms of the spectral radius of related RBF discretized coefficient matrices. The optimal choices of the time increment, relaxation parameters and physical problem parameters are found for achiev...
 Average Vector Field Splitting Method for Nonlinear Schrodinger Equation Akkoyunlu, Canan; Karasözen, Bülent (2012-05-02) The energy preserving average vector field integrator is applied to one and two dimensional Schrodinger equations with symmetric split-step method. The numerical results confirm the long-term preservation of the Hamiltonians, which is essential in simulating periodic waves.
Citation Formats
M. Tezer, “Dual reciprocity boundary element method for magnetohydrodynamic flow using radial basis functions,” INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, pp. 49–63, 2002, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39045.