Benzotriazole and benzothiadiazole containing conjugated copolymers for organic solar cell applications

2012-03-09
KARAKUS, Melike
APAYDIN, Dogukan Hazar
Yildiz, Dilber Esra
Toppare, Levent Kamil
Çırpan, Ali
2-Dodecyl benzotriazole (BTz) and benzothiadiazole (BTd) containing copolymers poly(4-(2-dodecyl-2H-benzo[d][1,2,3]triazol-4-yl)benzo[c][1,2,5]thiadiazole (P1), poly(4-(5-(2-dodecyl-7-(thiophen-2yl)-2H-benzo[d][1,2,3]triazol-4-yl)thiophen-2-yl)benzo[c][1,2,5]thiadiazole (P2) and poly(4-(5-(2-dodecyl-7-(4-hexylthiophen-2-yl)-2H-benzo[d] [1,2,3]triazol-4-yl)-3-hexylthiophen-2-yl) benzo[c][1,2,5] thiadiazole (P3) were synthesized via Suzuki polycondensation. We report the application of conjugated copolymers in bulk heterojunction photovoltaic devices. When the copolymers were blended with [6,6]phenyl-C-61-butyric acid methyl ester (PCBM), P2 showed the best performance with an open circuit voltage (V,), a short-circuit current density (J(sc)) and a power conversion efficiency (PCE) of 0.45 V, 3.48 mA cm(-2) and 0.45%, respectively, under AM 1.5G illumination conditions (100 mW cm(-2)). The hole mobilities of the devices were calculated from J-V curves using Space Charge Limited Current (SCLC) method and the maximum mobility value was found to be 3.15 x 10(-5) cm(2) V-1 s(-1) the P2:PCBM blend.

Suggestions

Electrochemical and optical properties of solution processable benzotriazole and benzothiadiazole containing copolymers
KARAKUS, Melike; BALAN, Abidin; BARAN, Derya; Toppare, Levent Kamil; Çırpan, Ali (2012-02-01)
2-Dodecyl benzotriazole (BTz) and benzothiadiazole (BTd) containing alternating copolymers poly(4-(2-dodecyl-2H-benzo[d][1,2,3]triazol-4-yl)benzo[c][1,2,5]thiadiazole (P1), poly(4-(5-(2-dodecyl-7-(thiophen-2yl)-2H-benzo[d][1,2,3]triazol-4-yl)thiophen-2-yl)benzo[c] [1,2,5] thiadiazole (P2) and poly(4-(5-(2-dodecyl-7-(4-hexylthiophen-2-yl)-2H-benzo[d] [1,2,3]triazol-4-yl) -3-hexylthiophen-2-yl) benzo[c][1,2,5] thiadiazole (P3) were synthesized via Suzuki polycondensation reactions. The solubility of the polym...
LATTICE POLYMERS - BEHAVIOR FAR FROM THETA-CONDITIONS
YURTSEVER, E; ISSEVER, S (Elsevier BV, 1992-01-01)
Two-dimensional Monte-Carlo simulations of lattice polymers were carried out employing Lennard-Jones (LJ) type intramolecular interactions. The shape-dependent properties of these polymers were studied over a large range of interaction parameters and temperatures. The variation of the critical constant was also analysed. Two-dimensional surfaces of sections were used to determine the portions of the parameter space which corresponded to theta-conditions. The behaviour of LJ polymers far from theta-condition...
Dibenzophenazine Derivatives as Visible Photosensitizers for Diaryliodonium Salts
Bulut, Umut; Kolay, Merve; Tarkuc, Simge; Toppare, Levent Kamil (Wiley, 2011-08-01)
The use of two dibenzo[a,c]phenazine derivatives, 10,13-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)dibenzo[a,c]phenazine and 10,13-bis(4-hexylthiophen-2-yl)dibenzo[a,c]phenazine are reported as photosensitizers for diaryliodonium salt photoinitiators. Novel dyes based on the dibenzo[a,c]phenazine skeleton are shown to be efficient in carrying out the cationic photopolymerizations. Representative examples of different types of monomers including epoxide, and vinyl monomers are polymerized in the presence o...
Electrochemical and optical properties of solution processable benzotriazole and benzothiadiazole containing copolymers
Karakuş, Melike; Çırpan, Ali; Toppare, Levent Kamil; Department of Chemistry (2011)
2-Dodecyl benzotriazole (BTz) and benzothiadiazole (BTd) containing copolymers poly(4-(2-dodecyl-2H-benzo[d][1,2,3]triazol-4-yl)benzo[c][1,2,5]thiadiazole (P1), poly(4-(5-(2-dodecyl-7-(thiophen-2yl)-2H-benzo[d][1,2,3]triazol-4-yl)thiophen-2-yl)benzo[c][1,2,5] thiadiazole (P2) and poly(4-(5-(2-dodecyl-7-(4-hexylthiophen-2-yl)-2H-benzo[d] [1,2,3]triazol-4-yl) -3-hexylthiophen-2-yl) benzo[c][1,2,5] thiadiazole (P3) were synthesized via Suzuki polymerization. Electrochemical and optical properties of the polyme...
Benzotriazole and Benzodithiophene Containing Medium Band Gap Polymer for Bulk Heterojunction Polymer Solar Cell Applications
UNAY, Hande; UNLU, Naime A.; HIZALAN, Gonul; HACIOGLU, Serife O.; Yildiz, Dilber Esra; Toppare, Levent Kamil; Çırpan, Ali (Wiley, 2015-02-15)
An alternating donor-acceptor copolymer based on a benzotriazole and benzodithiophene was synthesized and selenophene was incorporated as -bridge. The photovoltaic and optical properties of polymer were studied. The copolymer showed medium band gap and dual absorption peaks in UV-Vis absorption spectra. Photovoltaic properties of P-SBTBDT were performed by conventional device structure. The OSC device based on polymer: PC71BM (1:1, w/w) exhibited the best PCE of 3.60% with a V-oc of 0.67 V, a J(sc) of 8.95 ...
Citation Formats
M. KARAKUS, D. H. APAYDIN, D. E. Yildiz, L. K. Toppare, and A. Çırpan, “Benzotriazole and benzothiadiazole containing conjugated copolymers for organic solar cell applications,” POLYMER, pp. 1198–1202, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39079.