Fabrication of SiO2-stacked diamond membranes and their characteristics for microelectromechanical applications

2011-04-01
Diamond is a promising microelectromechanical systems (MEMS) material due to its high Young's Modulus and very large thermal conductivity. In this work, ultrananocrystalline diamond was stacked between silicon dioxide to form thermally-stable and robust membranes. These SiO2-stacked diamond layers were processed into MEMS-compatible membranes. For comparison, membranes composed of only SiO2 were fabricated as well. The structural characteristics of these membranes are compared and analyzed for membranes of different diameters. Using finite element modeling, the experimental behaviors of SiO2 and SiO2-stacked diamond membranes are analyzed.
DIAMOND AND RELATED MATERIALS

Suggestions

Investigation of structural, electronic, magnetic and lattice dynamical properties for XCoBi (X: Ti, Zr, Hf) Half-Heusler compounds
Surucu, Gokhan; IŞIK, MEHMET; CANDAN, ABDULLAH; Wang, Xiaotian; Güllü, Hasan Hüseyin (Elsevier BV, 2020-06-15)
Structural, electronic, magnetic, mechanical and lattice dynamical properties of XCoBi (X: Ti, Zr, Hf) Half-Heusler compounds have been investigated according to density functional theory and generalized gradient approximation. Among alpha, beta and gamma structural phases, gamma-phase structure has been found as the most stability characteristics depending on the calculated formation enthalpies, energy-volume dependencies and Cauchy pressures. Energy-volume plots of possible magnetic orders of gamma-phase ...
Modeling and fabrication of electrostatically actuated diaphragms for on-chip valving of MEMS-compatible microfluidic systems
Atik, Ali Can; Ozkan, Metin Dundar; Ozgur, Ebru; Külah, Haluk; Yıldırım, Ender (IOP Publishing, 2020-11-01)
This paper presents an analytical model to estimate the actuation potential of an electrostatic parylene-C diaphragm, processed on a glass wafer using standard microelectromechanical systems (MEMS) process technology, and integrable to polydimethylsiloxane (PDMS) based lab-on-a-chip systems to construct a normally-closed microvalve for flow manipulation. The accurate estimation of the pull-in voltage of the diaphragm is critical to preserve the feasibility of integration. Thus, we introduced an analytical m...
Photoelectronic and electrical properties of InS crystals
Qasrawi, AF; Hasanlı, Nızamı (IOP Publishing, 2002-12-01)
To identify the localized levels in InS single crystals, the dark electrical conductivity, current-voltage characteristics and photoconductivity measurements were carried out in the temperature range of 10-350 K. Temperature dependence of dark electrical conductivity and the space-charge limited current studies indicate the presence of a single discrete trapping level located at (10 +/- 2) meV below the conduction band with a density of about 4.8 x 10(11) cm(-3). The conductivity data above 110 K reveal an ...
Magnetization Studied as a Function of Temperature and Magnetic Field for Ferromagnetic Transition in DMNaFe
Kilit Dogan, E.; Yurtseven, Hasan Hamit (Springer Science and Business Media LLC, 2020-08-01)
Magnetization has been calculated as a function of temperature in the ferromagnetic phase of (CH3)(2)NH2Na0.5Fe0.5(HCOO)(3)denoted by DMNaFe as one of the metal formate framework by using molecular field theory. CalculatedM(T) is compared with the magnetization measured as a function of temperature (H = 10 Oe) in field-cooling and zero-field-cooling regimes from the literature, and a power-law analysis of the experimental data was performed for DMNaFe. Magnetization measured as a function of the magnetic fi...
Electrical Characterization of ZnInSe2/Cu0.5Ag0.5InSe2 Thin-Film Heterojunction
Gullu, H. H.; Parlak, Mehmet (Springer Science and Business Media LLC, 2019-05-01)
ZnInSe2/Cu0.5Ag0.5InSe2 diode structures have been fabricated by thermal evaporation of stacked layers on indium tin oxide-coated glass substrates. Temperature-dependent dark current-voltage measurements were carried out to extract the diode parameters and to determine the dominant conduction mechanisms in the forward- and reverse-bias regions. The heterostructure showed three order of magnitude rectifying behavior with a barrier height of 0.72 eV and ideality factor of 2.16 at room temperature. In the high...
Citation Formats
B. Bayram, “Fabrication of SiO2-stacked diamond membranes and their characteristics for microelectromechanical applications,” DIAMOND AND RELATED MATERIALS, pp. 459–463, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39174.