Almost autonomous training of mixtures of principal component analyzers

2004-07-02
Musa, MEM
de Ridder, D
Duin, RPW
Atalay, Mehmet Volkan
In recent years, a number of mixtures of local PCA models have been proposed. Most of these models require the user to set the number of submodels (local models) in the mixture and the dimensionality of the submodels (i.e., number of PC's) as well. To make the model free of these parameters, we propose a greedy expectation-maximization algorithm to find a suboptimal number of submodels. For a given retained variance ratio, the proposed algorithm estimates for each submodel the dimensionality that retains this given variability ratio. We test the proposed method on two different classification problems: handwritten digit recognition and 2-class ionosphere data classification. The results show that the proposed method has a good performance.
PATTERN RECOGNITION LETTERS

Suggestions

A statistical approach to sparse multi-scale phase-based stereo
Ulusoy, İlkay (Elsevier BV, 2007-09-01)
In this study, a multi-scale phase based sparse disparity algorithm and a probabilistic model for matching uncertain phase are proposed. The features used are oriented edges extracted using steerable filters. Feature correspondences are estimated using phase-similarity at multiple scale using a magnitude weighting scheme. In order to achieve sub-pixel accuracy in disparity, we use a fine tuning procedure which employs the phase difference between corresponding feature points. We also derive a probabilistic ...
On output independence and complementariness in rank-based multiple classifier decision systems
Saranlı, Afşar (Elsevier BV, 2001-12-01)
This study presents a theoretical analysis of output independence and complementariness between classifiers in a rank-based multiple classifier decision system in the context of the partitioned observation space theory. To enable such an analysis, an information theoretic interpretation of a rank-based multiple classifier system is developed and basic concepts from information theory are applied to develop measures for output independence and complementariness. It is shown that output independence of classi...
Relative consistency of projective reconstructions obtained from the same image pair
Otlu, Burcak; Atalay, Mustafa Ümit; Hassanpour, Reza (World Scientific Pub Co Pte Lt, 2006-08-01)
This study obtains projective reconstructions of an object or a scene from its image pair and measures relative consistency of these projective reconstructions. 3D points are estimated from an image pair using projective and epipolar geometry. Two measures are presented for verification of projective reconstructions with each other. These measures are based on the equality of ratios between the x-, y- and z-coordinates of 3D reconstructed points which are obtained from the same corresponding points. This in...
SASI: a generic texture descriptor for image retrieval
Carkacioglu, A; Yarman-Vural, F (Elsevier BV, 2003-11-01)
In this paper, a generic texture descriptor, namely, Statistical Analysis of Structural Information (SASI) is introduced as a representation of texture. SASI is based on statistics of clique autocorrelation coefficients, calculated over structuring windows. SASI defines a set of clique windows to extract and measure various structural properties of texture by using a spatial multi-resolution method. Experimental results, performed on various image databases, indicate that SASI is more successful then the Ga...
Extracting the Boundaries of Clusters: A Post-Clustering Tool for Spatial Datasets
İNKAYA, TÜLİN; Kayaligil, Sinan; Özdemirel, Nur Evin (World Scientific Pub Co Pte Lt, 2020-04-01)
Boundary extraction is a fundamental post-clustering problem. It facilitates interpretability and usability of clustering results. Also, it provides visualization and dataset reduction. However, it has not attracted much attention compared to the clustering problem itself. In this work, we address the boundary extraction of clusters in 2- and 3-dimensional spatial datasets. We propose two algorithms based on Delaunay Triangulation (DT). Numerical experiments show that the proposed algorithms generate the cl...
Citation Formats
M. Musa, D. de Ridder, R. Duin, and M. V. Atalay, “Almost autonomous training of mixtures of principal component analyzers,” PATTERN RECOGNITION LETTERS, pp. 1085–1095, 2004, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39276.