Quality of deployment in surveillance wireless sensor networks

2005-01-01
Onur, Ertan
Deliç, Hakan
When wireless sensors are used to keep an area under surveillance, a critical issue is the quality of the deployment from the sensing coverage viewpoint. In this paper, we propose several quality measures, which indicate if the deployment provides sufficient coverage, or whether redeployment is required or not. The terrain is modeled as a grid and the placement of the sensors is uniformly distributed. Neyman–Pearson detection is utilized to determine the effects of false-alarm and signal characteristics on the measures.
International Journal of Wireless Information Networks

Suggestions

On the quality of deployment in wireless sensor networks
Onur, Ertan; Delic, H (2005-01-01)
When wireless sensors are used to keep an area under surveillance, a critical issue is the quality of the deployment from the sensing coverage viewpoint. In this paper, we propose several quality measures, which indicate if the deployment provides sufficient coverage, or whether redeployment is required or not. The terrain is modelled as a grid and the placement of the sensors is uniformly distributed. Neyman-Pearson detection is utilized to determine the effects of false alarm and signal characteristics on...
Surveillance with wireless sensor networks in obstruction: Breach paths as watershed contours
Onur, Ertan; Delic, Hakan; Akarun, Lale (Elsevier BV, 2010-02-01)
For surveillance applications of wireless sensor networks, analysis of sensing coverage and quality of sensing is crucial. For rough terrains where obstacles block the sensing capability, region-based approaches must be employed to determine the sensing quality. In this paper, we present a method to determine the breach paths and the deployment quality defined as the minimum of the maximum detection probabilities on the breach paths in the presence of obstacles. We propose the utilization of watershed segme...
Lifetime extension for surveillance wireless sensor networks with intelligent redeployment
Kosar, Rabun; Bojaxhiu, Ilir; Onur, Ertan; Ersoy, Cem (Elsevier BV, 2011-11-01)
For wireless sensor networks (WSNs), uneven energy consumption is a major problem. A direct consequence of this is the energy hole problem, formation of sensing voids within the network field due to battery depleted sensors in the corresponding region. Hole formations are inherent in the network topology, yet it is possible to develop strategies to delay the hole formations to later stages of the network operation and essentially extend the network lifetime without sensing quality loss. In this work, we ini...
How many sensors for an acceptable breach detection probability?
Onur, Ertan; Delic, H (Elsevier BV, 2006-01-10)
Determining the required number of sensors to be deployed is a critical decision for surveillance wireless sensor networks. In this paper, we discuss the trade-off between the number of sensors and the breach detection probability considering the effects of sensor parameters. We present the weakest breach path problem formulation and provide a solution by utilizing the Dijkstra's shortest path algorithm. We propose a method to determine the required number of sensors to be deployed and to gain insight about...
Path planning for mobile-anchor based wireless sensor network localization: Static and dynamic schemes
Erdemir, Ecenaz; Tuncer, Temel Engin (Elsevier BV, 2018-08-01)
In wireless sensor networks, node locations are required for many applications. Usually, anchors with known positions are employed for localization. Sensor positions can be estimated more efficiently by using mobile anchors (MAs). Finding the best MA trajectory is an important problem in this context. Various path planning algorithms are proposed to localize as many sensors as possible by following the shortest path with minimum number of anchors. In this paper, path planning algorithms for MA assisted loca...
Citation Formats
E. Onur and H. Deliç, “Quality of deployment in surveillance wireless sensor networks,” International Journal of Wireless Information Networks, pp. 61–67, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39290.