Efficient active rule processing in wireless multimedia sensor networks

Oztarak, Hakan
Akkaya, Kemal
Yazıcı, Adnan
Sarisaray-Boluk, Pinar
Due to limited energy resources in wireless multimedia sensor networks (WMSNs), there is a need to perform data reduction and elimination over raw video data at the camera sensors before transmission. Nonetheless, this data reduction and elimination may create imprecision and uncertainty in the data, reducing the quality of decision making. In this paper, we propose a reactive mechanism for not only fusing uncertain data at the sink but also for automated processing of data using active rules, extending the classical event-condition-action structure. In this mechanism, data fusion is performed using fuzzy logic to handle uncertainty in the received data. The fused data is then processed to infer certain predefined actions. These actions are triggered based on both the predefined event definitions and temporal and spatial data about the detected objects. Through experimentation, the proposed mechanism is shown to provide good accuracies while making significant energy savings at the cameras.


Path planning for mobile-anchor based wireless sensor network localization: Static and dynamic schemes
Erdemir, Ecenaz; Tuncer, Temel Engin (Elsevier BV, 2018-08-01)
In wireless sensor networks, node locations are required for many applications. Usually, anchors with known positions are employed for localization. Sensor positions can be estimated more efficiently by using mobile anchors (MAs). Finding the best MA trajectory is an important problem in this context. Various path planning algorithms are proposed to localize as many sensors as possible by following the shortest path with minimum number of anchors. In this paper, path planning algorithms for MA assisted loca...
Lifetime extension for surveillance wireless sensor networks with intelligent redeployment
Kosar, Rabun; Bojaxhiu, Ilir; Onur, Ertan; Ersoy, Cem (Elsevier BV, 2011-11-01)
For wireless sensor networks (WSNs), uneven energy consumption is a major problem. A direct consequence of this is the energy hole problem, formation of sensing voids within the network field due to battery depleted sensors in the corresponding region. Hole formations are inherent in the network topology, yet it is possible to develop strategies to delay the hole formations to later stages of the network operation and essentially extend the network lifetime without sensing quality loss. In this work, we ini...
SWARM-based data delivery in Social Internet of Things
Hasan, Mohammed Zaki; Al-Turjman, Fadi (Elsevier BV, 2019-03-01)
Social Internet of Things (SIoTs) refers to the rapidly growing network of connected objects and people that are able to collect and exchange data using embedded sensors. To guarantee the connectivity among these objects and people, fault tolerance routing has to be significantly considered. In this paper, we propose a bio-inspired particle multi-swarm optimization (PMSO) routing algorithm to construct, recover and select k-disjoint paths that tolerates the failure while satisfying quality of service (QoS) ...
IoT-enabled smart grid via SM: An overview
Al-Turjman, Fadi; Abujubbeh, Mohammad (Elsevier BV, 2019-07-01)
Power quality and reliability issues are big challenges to both service provider and consumers in conventional power grids. The ongoing technological advancements in the Internet of Things (IoT) era provide better solutions to enhance the management of these challenges and enforce the measures of a Smart Grid (SG). Advanced Metering Infrastructure (AMI) and Smart Metering (SM) technologies are enabler technologies that can modernize the conventional power grid through exposing the hidden details of electric...
Quality of deployment in surveillance wireless sensor networks
Onur, Ertan; Deliç, Hakan (Springer Science and Business Media LLC, 2005-01-01)
When wireless sensors are used to keep an area under surveillance, a critical issue is the quality of the deployment from the sensing coverage viewpoint. In this paper, we propose several quality measures, which indicate if the deployment provides sufficient coverage, or whether redeployment is required or not. The terrain is modeled as a grid and the placement of the sensors is uniformly distributed. Neyman–Pearson detection is utilized to determine the effects of false-alarm and signal characteristics on ...
Citation Formats
H. Oztarak, K. Akkaya, A. Yazıcı, and P. Sarisaray-Boluk, “Efficient active rule processing in wireless multimedia sensor networks,” INTERNATIONAL JOURNAL OF AD HOC AND UBIQUITOUS COMPUTING, pp. 64–77, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38057.