Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Effect of Laser Parameters and Post-Texturing Treatments on the Optical and Electrical Properties of Laser Textured c-Si Wafers
Date
2018-03-21
Author
RADFAR, Behrad
ES, FIRAT
NASSER, Hisham
AKDEMİR, Ozan
Bek, Alpan
Turan, Raşit
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
274
views
0
downloads
Cite This
Surface plays a crucial role in the performance of crystalline silicon (cSi) based solar cells as it affects both electrical and optical properties. To minimize reflection from the flat surface and thus improve light trapping, the cSi wafers must be textured. For mono-cSi cells, anisotropic alkaline etchants are commonly utilized to create pyramids on the surface. However, this method is not viable for multi-crystalline silicon (mc-Si) wafers due to the presence of different and random crystallographic orientations. In this work, we employed laser texturing, which is an isotropic texturing process, as an alternative texturing method for mc-Si wafers. This approach utilizes a laser process to create pits on the cSi surface. The laser's processing parameters were justified by performing a series of experiments. After texturing, physical (ultrasonic bath with deionized water) and chemical (in KOH with two different concentrations of 1 and 20%) cleanings with different durations were performed which were essential to remove laser-induced damages and other residues from the surface. In order to evaluate the optical response of the textured surfaces, weighted reflection values were measured and correlated with scanning electron microscopy (SEM) images of the textured features before and after post-texturing cleaning step. An impressive low weighted reflection of only 4.2% was measured from laser textured mc-Si with anti-reflection coating after optimizing the laser and post-texturing processes. Moreover, an implied open-circuit voltage (iVoc) of up to 692 mV was achieved by passivating the laser-textured surfaces by Al2O3.
Subject Keywords
Solar cells
,
Efficiency
URI
https://hdl.handle.net/11511/39300
DOI
https://doi.org/10.1063/1.5049298
Collections
Department of Physics, Conference / Seminar
Suggestions
OpenMETU
Core
Surface modification of multi-crystalline silicon in photovoltaic cell by laser texturing
Radfar, Behrad; Turan, Raşit; Yerci, Selçuk; Department of Micro and Nanotechnology (2019)
Surface of crystalline silicon solar cell plays an important role in its performance. It affects the optical properties which can be determined by surface’ reflectance. To minimize the reflection from the flat surface, thus, improve light trapping, the crystalline silicon wafers must be textured. Through the texturing process, roughness is introduced at the surface, so the incident light has a larger probability of being absorbed into the solar cell. Monocrystalline silicon solar cells can typically be text...
Analysis of boron doped hydrogenated amorphous silicon carbide thin film for silicon heterojunction solar cells
Salimi, Arghavan; Turan, Raşit; Department of Micro and Nanotechnology (2019)
Silicon based solar cells are the dominant type of solar cells in the photovoltaic industry. Recently, there have been increasing efforts to develop c-Si solar cells with higher efficiency and lower cost. Among them, silicon heterojunction solar cell (SHJ) is attracting much attention because of its superior performance values demonstrated at both R&D and industrial levels. One of the common limiting criteria is the recombination at the front side which can be solved by providing proper passivation at the f...
Fabrication and characterization of PEDOT:PSS hole transport layers for silicon solar cells
Türkay, Deniz; Yerci, Selçuk; Department of Micro and Nanotechnology (2019)
Heterojunction silicon solar cells have gained considerable interest in recent years with the demonstration of record-high device performances. However, these devices are typically based on inorganic layers fabricated at high temperatures under vacuum environment, using toxic precursors. The low temperature budget, non-toxic chemical contents, and wide range of adjustability in physical and electrical properties make poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) a promising candidate a...
Three dimensional crystalline silicon solar cells
Baytemir, Gülsen; Turan, Raşit; Department of Physics (2018)
Three-dimensional crystalline silicon solar cells have been attracting attention with its remarkable electrical and optical performance. In this geometry, nano/micropillars allow minority carrier collection in the radial direction and shorten the path length of the photogenerated carriers. Furthermore, with appropriate geometry of the pillars the solar cell efficiency is enhanced due to the reduced surface reflectance and increased light harvesting. Throughout this study, metal assisted etching (MAE), a top...
Investigation on Post Cleanings on Modified Surface Using Laser Texturing
Radfar, Behrad; Es, Fırat; Turan, Raşit (2018-09-28)
The surface of crystalline silicon (c-Si) solar cells can affect their performance as the surface can alter both electrical and optical properties. The c-Si texturing is carried out to increase the absorption; therefore, the optical properties will be enhanced. The anisotropic alkaline etchants are commonly used to form pyramids on the surface of monocrystalline Si wafers. However, this method is not usable for multi-crystalline silicon (mc-Si) because of its grains with random crystallographic orientations...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. RADFAR, F. ES, H. NASSER, O. AKDEMİR, A. Bek, and R. Turan, “Effect of Laser Parameters and Post-Texturing Treatments on the Optical and Electrical Properties of Laser Textured c-Si Wafers,” 2018, vol. 1999, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39300.