Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Thermal decomposition of Tatarstan Ashal'cha heavy crude oil and its SARA fractions
Date
2016-12-15
Author
Varfolomeev, Mikhail A.
Galukhin, Andrey
Nurgaliev, Danis K.
Kök, Mustafa Verşan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
257
views
0
downloads
Cite This
In this research, heavy crude oil from Ashal'cha field, Republic of Tatarstan, and its SARA (saturate, aromatic, resin and asphaltene) fractions were analyzed by differential scanning calorimetry (DSC) and thermogravimetry (TGA) methods. The experiments were performed at three different heating rates (10, 20, 30 degrees C/min) for DSC and at single heating rate for TGA analysis, all under the air atmosphere. In DSC experiments, two main reaction regions were detected at each heating rate known as low and high temperature oxidation reactions. On the other hand, in TGA experiments, one main region was observed. For all the SARA fractions studied, highest heat of reaction was observed in lowest heating rate. The kinetic analysis of the crude oils and their fractions was also performed using ASTM E-698 and Arrhenius methods, respectively. Activation energy values of the crude oil sample and the fractions varied between 69.2 and 201.8 kJ/mol in LTO region and 82.9-182.1 kJ/mol in HTO regions, respectively. In Arrhenius method, the activation energy values were in the range of 33.1-108.9 kJ/mol.
Subject Keywords
Crude oil
,
SARA fractions
,
Differential scanning calorimetry
,
Thermogravimetry
,
Kinetics
,
In-situ combustion
URI
https://hdl.handle.net/11511/39328
Journal
FUEL
DOI
https://doi.org/10.1016/j.fuel.2016.08.042
Collections
Department of Petroleum and Natural Gas Engineering, Article
Suggestions
OpenMETU
Core
Pyrolysis analysis and kinetics of crude oils
Kök, Mustafa Verşan (1998-01-01)
This research presents the results of an experimental study on the determination of pyrolysis behaviour and kinetics of six crude oils by differential scanning calorimetry (DSC) and thermogravimetry (TG/DTG). Crude oil pyrolysis indicated two main temperature ranges where loss of mass was observed. The first region between ambient to 400 degrees C was distillation. The second region between 400 and 600 degrees C was visbreaking and thermal cracking. Arrhenius-type kinetic model is used to determine the kine...
Thermal behavior and kinetics of crude oils at low heating rates by differential scanning calorimeter
Kök, Mustafa Verşan (2012-04-01)
The objective of this research was to investigate thermal behavior and kinetics of different origin crude oils in limestone matrix by differential scanning calorimeter (DSC) at low heating rates. In DSC experiments, three distinct reaction regions were identified in all of the crude oil + limestone mixtures known as low temperature oxidation (LTO), fuel deposition (FD) and high temperature oxidation (HTO) respectively. Kinetic analysis of the crude oil samples was determined by different models known as AST...
TGA and DSC investigation of different clay mineral effects on the combustion behavior and kinetics of crude oil from Kazan region, Russia
Kök, Mustafa Verşan; Nurgaliev, Danis K. (2021-05-01)
In this research, the effect of different clay minerals (bentonite, illite and kaolinite) on the combustion behavior and kinetics of crude oils from Kazan region (Russia) was studied using thermogravimetry (TGA) and differential scanning calorimeter (DSC). The ramped temperature experiments were performed at constant heating rates (10, 20 and 30 degrees C/min) under air atmosphere. In both TGA and DSC experiments, two reaction zones were identified known as low temperature oxidation (LTO) and high temperatu...
Thermal characteristics of crude oils treated with rheology modifiers
Kök, Mustafa Verşan; Cloudy, P.; Martin, D.; Garcin, M.; Volle, J.L. (1997-12-01)
Thermal characteristics of eight crude oils and their treatment with additives were studied by differential scanning calorimetry (DSC), thermomicroscopy, viscometer and pour point tester. Different additives were found as more effective for different type of crude oils depending on the wax content. Crude oils showed a reduced pour point after treatment with additives. Effects of different additives were also discussed by analysing the DSC curves and thermomicroscopy result.
Chemical evaluation and kinetics of Siberian, north regions of Russia and Republic of Tatarstan crude oils
Varfolomeev, Mikhail A.; Nagrimanov, Ruslan N.; Samatov, Aizat A.; Rakipov, Ilnaz T.; Nikanshin, Alexander D.; Vakhin, Alexey V.; Nurgaliev, Danis K.; Kök, Mustafa Verşan (2016-01-01)
In this research, thermal characteristics and model free kinetics of five different degrees American Petroleum Institute gravity crude oil samples from different locations were studied using combustion calorimetry and thermogravimetry (TGA) techniques. Higher heating values of crude oils were determined from the combustion calorimetry experiments. It was shown that these values increase with an increase in saturate fraction and degrees API gravity of studied samples and decrease with an increase in viscosit...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. A. Varfolomeev, A. Galukhin, D. K. Nurgaliev, and M. V. Kök, “Thermal decomposition of Tatarstan Ashal’cha heavy crude oil and its SARA fractions,”
FUEL
, pp. 122–127, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39328.