Efficiency enhancement of methanol/ethanol oxidation reactions on Pt nanoparticles prepared using a new surfactant, 1,1-dimethyl heptanethiol

2011-01-01
Sen, Fatih
Sen, Selda
Gökağaç Arslan, Gülsün
In this study, carbon-supported platinum nanoparticle catalysts were prepared using PtCl(4) and H(2)PtCl(6) as starting materials and 1-heptanethiol, 1,1-dimethyl heptanethiol, 1-hexadecanethiol and 1-octadecanethiol as surfactants. These nanoparticles can be used as catalysts for methanol and ethanol oxidation reactions in methanol and ethanol fuel cells. 1,1-Dimethyl heptanethiol was used for the first time in this type of synthesis; other surfactants were used to synthesize nanoparticles for comparison of the catalyst's performance. Cyclic voltammetry, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM) were used to characterize the catalysts. It should also be stressed that AFM was employed for the first time in determining the surface topography of these catalysts. XRD, TEM and AFM height results indicate that the platinum crystallizes into a face-centered cubic structure and the surfactant plays an important role in determining the size of the platinum nanoparticles. XPS data revealed that the platinum was found in two different oxidation states, Pt(0) and Pt(IV) with a ratio of about 7.5 : 2.5, respectively. Electrochemical studies showed catalyst IIa to be the most active sample towards methanol/ethanol oxidation reactions (similar to 342 A g(-1) Pt at 0.612 V for methanol (4.6 times more active than the commercial catalyst), similar to 309 A g(-1) Pt at 0.66 V for ethanol, (15.4 times more active than the commercial catalyst)).
PHYSICAL CHEMISTRY CHEMICAL PHYSICS

Suggestions

High performance Pt nanoparticles prepared by new surfactants for C-1 to C-3 alcohol oxidation reactions
ŞEN, FATİH; Gökağaç Arslan, Gülsün; Sen, Selda (Springer Science and Business Media LLC, 2013-09-07)
In this study, platinum nanoparticles have been prepared using PtCl4 as a starting material and 1-hexylamine, N-methylhexylamine, N,N-dimethylhexylamine, 1-heptylamine, N-methylheptylamine, and N, N-dimethylheptylamine as surfactants. All these surfactants were used in this synthesis, for the first time, to explore the effect of primary, secondary, and tertiary amine and chain length on the size and catalytic activity toward C1-C3 alcohol electro-oxidation. The electrochemical performance of all catalysts w...
Improving catalytic efficiency in the methanol oxidation reaction by inserting Ru in face-centered cubic Pt nanoparticles prepared by a new surfactant, tert-octanethiol
Sen, Fatih; Goekagac, Guelsuen (2008-05-01)
PtRu/C catalysts, which have different atomic percent ratios of Pt and Ru (Pt/Ru = 0.8 (catalyst A), 2.1 (catalyst B), and 3.5 (catalyst C)), were prepared using PtCl4 and RuCl3 as starting materials and tert-octanethiol as a surfactant for the first time. Each was characterized by X-ray diffraction, transmission electron microscopy, energy dispersive analysis, X-ray photoelectron spectroscopy, cyclic voltammetry, and elemental analysis, and their activities were determined toward the methanol oxidation rea...
Pyrolysis of Polyethylene over Aluminum-Incorporated MCM-41 Catalyst
Aydemir, Bugce; Sezgi, Naime Aslı (2016-01-01)
Aluminum-containing MCM-41 catalysts were synthesized in this study by impregnation of aluminum into hydrothermally synthesized MCM-41. Aluminum was loaded into the porous framework of silica with different Al/Si ratios, using aluminum isopropoxide as the aluminum source. These catalysts exhibited Type IV adsorption-desorption isotherms and had a pore diameter of 2.4nm. Aluminum species were coordinated tetra- and octahedrally in the structure of catalysts. Diffuse Reflectance Fourier Transform Infrared Spe...
Ni and cu incorporated mesoporous nanocomposite catalytic materials
Nalbant, Asli; Doğu, Timur; Balci, Suna (2008-02-01)
Nickel and copper incorporated MCM-41-like mesoporous nanocomposite materials prepared by the direct hydrothermal synthesis and the impregnation procedures showed highly attractive pore structure and surface area results for catalytic applications. The XRD patterns showed that characteristic MCM-41 structure was preserved for the materials synthesized following an impregnation procedure before the calcination step. The surface area of the Cu impregnated material with a quite high Cu/Si atomic ratio (0.19) w...
Exhast gas cleaning by three way catalytic converters
Karakoç Yıldız, Zuhal; Önal, Işık; Department of Chemical Engineering (2013)
In this study, powder catalysts slurries are washcoated on cordierite monoliths. CeO2-ZrO2 (CZO) and CeO2-ZrO2-Al2O3 (CZAO) mixed oxides are synthesized by co-precipitation. Pd and Rh metals are used as a nobel metals in these supports. Metal loaded CZO is mixed with gamma phase alumina. Powder catalysts are characterized by XRD, BET, ICP-MS and the monolithic catalysts are imaged by SEM. Catalytic activities of monolithic catalysts are tested in dynamic test system which is computerized and basically compo...
Citation Formats
F. Sen, S. Sen, and G. Gökağaç Arslan, “Efficiency enhancement of methanol/ethanol oxidation reactions on Pt nanoparticles prepared using a new surfactant, 1,1-dimethyl heptanethiol,” PHYSICAL CHEMISTRY CHEMICAL PHYSICS, pp. 1676–1684, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39362.