Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Frictional sliding modes along an interface between identical elastic plates subject to shear impact loading
Download
index.pdf
Date
2005-04-01
Author
Çöker, Demirkan
Lykotrafitis, G.
Needleman, A.
Rosakis, A.J.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
8
views
10
downloads
Frictional sliding along an interface between two identical isotropic elastic plates under impact shear loading is investigated experimentally and numerically. The plates are held together by a compressive stress and one plate is subject to edge impact near the interface. The experiments exhibit both a crack-like and a pulse-like mode of sliding. Plane stress finite element calculations modeling the experimental configuration are carried out, with the interface characterized by a rate and state dependent frictional law. A variety of sliding modes are obtained in the calculations depending on the impact velocity, the initial compressive stress and the values of interface variables. For low values of the initial compressive stress and impact velocity, sliding occurs in a crack-like mode. For higher values of the initial compressive stress and/or impact velocity, sliding takes place in a pulse-like mode. One pulse-like mode involves well-separated pulses with the pulse amplitude increasing with propagation distance. Another pulse-like mode involves a pulse train of essentially constant amplitude. The propagation speed of the leading pulse (or of the tip of the crack-like sliding region) is near the longitudinal wave speed and never less than root 2 times the shear wave speed. Supersonic trailing pulses are seen both experimentally and computationally. The trends in the calculations are compared with those seen in the experiments.
Subject Keywords
Dynamic sliding
,
Rate and state friction
,
Crack-like
,
Pulse-like
URI
https://hdl.handle.net/11511/39538
Journal
Journal of the Mechanics and Physics of Solids
DOI
https://doi.org/10.1016/j.jmps.2004.11.003
Collections
Department of Aerospace Engineering, Article