Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Prediction of damage in R/C shear panels subjected to reversed cyclic loading
Date
2005-01-01
Author
Hindi, R
Mansour, M
Dicleli, Murat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
195
views
0
downloads
Cite This
In this paper, the damage prediction of shear-dominated reinforced concrete (RC) elements subjected to reversed cyclic shear is presented using an existing damage model. The damage model is primarily based on the monotonic energy dissipating capacity of structural elements before and after the application of reversed cyclic loading. Therefore, it could be universally applicable to different types of structural members, including shear-dominated RC members. The applicability of the damage model to shear-dominated RC members is assessed using the results from reversed cyclic shear load tests conducted earlier on eleven RC panels. First, the monotonic energy dissipating capacities of the panels before and after the application of reversed cyclic loading are estimated and employed in the damage model. Next, a detailed comparison between the analytically predicted damage and the observed damage from the experimental tests of the panels is performed throughout the loading history. Subsequently, the effects of two important parameters, the orientation and the percentage of reinforcement, on the damage of such shear-dominated panels are studied. The research results demonstrated that the analytically predicted damage is in reasonably good agreement with the observed damage throughout the entire loading history. Furthermore, the orientation and percentage of reinforcement is found to have considerable effect on the extent of damage.
Subject Keywords
Geotechnical Engineering and Engineering Geology
,
Civil and Structural Engineering
,
Building and Construction
URI
https://hdl.handle.net/11511/39578
Journal
JOURNAL OF EARTHQUAKE ENGINEERING
DOI
https://doi.org/10.1142/s1363246905001827
Collections
Department of Engineering Sciences, Article
Suggestions
OpenMETU
Core
Development of Fragility Curves for Single-Column RC Italian Bridges Using Nonlinear Static Analysis
Perdomo, Camilo; Monteiro, Ricardo; Sucuoğlu, Haluk (Informa UK Limited, 2020-05-07)
The main objective of this study is to assess the accuracy and suitability of Nonlinear Static Procedures (NSPs) in the development of analytical damage fragility curves for seismic risk assessment of large portfolios of Reinforced Concrete (RC) bridges. Seven NSP approaches, from widely used single-mode conventional pushover-based approaches to the more rigorous multi-mode conventional or adaptive pushover-based procedures are implemented. By systematically comparing fragility curve estimations in terms of...
Predicting the shear strength of reinforced concrete beams using artificial neural networks
Mansour, MY; Dicleli, Murat; Lee, JY; Zhang, J (Elsevier BV, 2004-05-01)
The application of artificial neural networks (ANNs) to predict the ultimate shear strengths of reinforced concrete (RC) beams with transverse reinforcements is investigated in this paper. An ANN model is built, trained and tested using the available test data of 176 RC beams collected from the technical literature. The data used in the ANN model are arranged in a format of nine input parameters that cover the cylinder concrete compressive strength, yield strength of the longitudinal and transverse reinforc...
Importance of Degrading Behavior for Seismic Performance Evaluation of Simple Structural Systems
Erberik, Murat Altuğ (Informa UK Limited, 2011-01-01)
This study focuses on effect of degradation characteristics on seismic performance of simple structural systems. Equivalent single degree of freedom systems are used for which the structural characteristics are taken from existing reinforced concrete (RC) frame buildings. Simulation of degrading behavior is achieved by considering actual experimental data. To obtain the seismic response of degrading structural systems, two different approaches are used: inelastic spectral analysis and fragility analysis. Ac...
Lateral stiffness of steel plate shear wall systems
Topkaya, Cem (Elsevier BV, 2009-08-01)
The accuracy of the finite element method and strip method of analysis for calculating the lateral stiffness of steel plate shear wall (SPSW) systems is assessed by making comparisons with experimental findings. Comparisons revealed that while both methods provide acceptable accuracy, they also require the generation of sophisticated computer models. In this paper, two alternative methods are developed. The first one is an approximate hand method based on the deep beam theory. The classical deep beam theory...
Evaluation of displacement coefficient method for seismically retrofitted buildings with various ductility capacities
Dicleli, Murat (Wiley, 2014-07-25)
This research study is aimed at evaluating the accuracy of the displacement coefficient method (DCM) of FEMA 440 and associated nonlinear static procedure (NLSP) for actual buildings with soft story mechanism and various ductility capacities. The DCM and associated NLSP are evaluated using two existing seismically vulnerable buildings with soft story mechanism. The buildings are first retrofitted using a ductile steel-brace-link system to represent those with good ductility capacity and then retrofitted wit...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
R. Hindi, M. Mansour, and M. Dicleli, “Prediction of damage in R/C shear panels subjected to reversed cyclic loading,”
JOURNAL OF EARTHQUAKE ENGINEERING
, pp. 41–66, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39578.