The effects of geometric errors on inverse ECG solutions using Kalman filter and Bayesian MAP estimation Kalman filtre ve Bayes-MAP ile ters EKG çözümlerinde geometrik hatalarin etkisi

2009-10-27
Geometric errors in inverse ECG are usually the errors occur in the mathematical model used for solution due to wrong interpretation of heart's position and size, conductivities of organs in the model and electrode positions. In this study the effects of geometric errors in inverse ECG problem for Kalman filter and Bayes-AMP methods are studied Furthermore the method suggested by Kaipio et. al., which assumes that these geometric errors are additive noise and independent of the epicardial potentials, is implemented. With this method, the effects of geometric errors on Kalman filter and Bayes-MAP solutions are reduced al the cost of smoothing the wavefront.
14th National Biomedical Engineering Meeting

Suggestions

Evaluation of multivariate adaptive non-parametric reduced-order model for solving the inverse electrocardiography problem: a simulation study
Onak, Onder Nazim; Serinağaoğlu Doğrusöz, Yeşim; Weber, Gerhard Wilhelm (Springer Science and Business Media LLC, 2019-05-01)
In the inverse electrocardiography (ECG) problem, the goal is to reconstruct the heart's electrical activity from multichannel body surface potentials and a mathematical model of the torso. Over the years, researchers have employed various approaches to solve this ill-posed problem including regularization, optimization, and statistical estimation. It is still a topic of interest especially for researchers and clinicians whose goal is to adopt this technique in clinical applications. Among the wide range of...
Bayesian solutions and performance analysis in bioelectric inverse problems
Serinağaoğlu Doğrusöz, Yeşim; MacLeod, RS (Institute of Electrical and Electronics Engineers (IEEE), 2005-06-01)
In bioelectric inverse problems, one seeks to recover bioelectric sources from remote measurements using a mathematical model that relates the sources to the measurements. Due to attenuation and spatial smoothing in the medium between the sources and the measurements, bioelectric inverse problems are generally ill-posed. Bayesian methodology has received increasing attention recently to combat this ill-posedness, since it offers a general formulation of regularization constraints and additionally provides s...
A Kalman filter-based approach to reduce the effects of geometric errors and the measurement noise in the inverse ECG problem
Aydin, Umit; Serinağaoğlu Doğrusöz, Yeşim (Springer Science and Business Media LLC, 2011-09-01)
In this article, we aimed to reduce the effects of geometric errors and measurement noise on the inverse problem of Electrocardiography (ECG) solutions. We used the Kalman filter to solve the inverse problem in terms of epicardial potential distributions. The geometric errors were introduced into the problem via wrong determination of the size and location of the heart in simulations. An error model, which is called the enhanced error model (EEM), was modified to be used in inverse problem of ECG to compens...
Effects of different inter-implant distances on the stress distribution around endosseous implants in posterior mandible: A 3D finite element analysis
Simsek, B; Erkmen, E; Yilmaz, D; Eser, A (Elsevier BV, 2006-04-01)
Purpose: The aim of this study was to evaluate the effects of different inter-implant distances on stress distribution in the bone around the endosseous titanium implants under vertical, oblique and horizontal loads in the posterior mandibular edentulousim by finite element analysis (3D FEA).
Implementation and comparison of reconstruction algorithms for magnetic resonance-electric impedance tomography (mr-eit)
Martin Lorca, Dario; Eyüboğlu, Behçet Murat; Department of Biomedical Engineering (2007)
In magnetic resonance electrical impedance tomography (MR-EIT), crosssectional images of a conductivity distribution are reconstructed. When current is injected to a conductor, it generates a magnetic field, which can be measured by a magnetic resonance imaging (MRI) scanner. MR-EIT reconstruction algorithms can be grouped into two: current density based reconstruction algorithms (Type-I) and magnetic flux density based reconstruction algorithms (Type-II). The aim of this study is to implement a series of r...
Citation Formats
Ü. Aydin and Y. Serinağaoğlu Doğrusöz, “The effects of geometric errors on inverse ECG solutions using Kalman filter and Bayesian MAP estimation Kalman filtre ve Bayes-MAP ile ters EKG çözümlerinde geometrik hatalarin etkisi,” presented at the 14th National Biomedical Engineering Meeting, Izmir, TURKEY, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39634.