Electrochemical Polymerization of (2-Dodecyl-4,7-di(thiophen-2-yl)-2H-benzo[d][1,2,3] triazole): A Novel Matrix for Biomolecule Immobilization

2010-12-08
Ekiz, Fulya
Yuksel, Merve
Balan, Abidin
TİMUR, SUNA
Toppare, Levent Kamil
A recently synthesized conducting polymer [poly(2-dodecyl-4,7-di(thiophen-2-yl)-2H-benzo[d][1,2,3] triazole (PTBT)] was tested as a platform for biomolecule immobilization. After electrochemical polymerization of the monomer (TBT) on graphite electrodes, immobilization of glucose oxidase (GOx, beta-D-glucose: oxygen-1-oxidoreductase, EC 1.1.3.4) was carried out. To improve the interactions between the enzyme and hydrophobic alkyl chain on the polymeric structure, GOx and isoleucine (Ile) amino acid were mixed in sodium phosphate buffer (pH 7.0) with a high ionic strength (250 x 10(-3) M). The solution is then casted on the polymer film, and the amino groups in the protein structure were crosslinked using glutaraldehyde (GA) as the bifunctional agent. Finally, the surface was covered with a perm-selective membrane. Consequently, cross-linked enzyme crystal (CLEC) like assembles with regular shapes were observed after immobilization. Microscopic techniques such as scanning electron microscopy (SEM) and fluorescence microscopy were used to monitor the surface morphologies of both the polymer and the bioactive layer. Electrochemical responses of the enzyme electrodes were measured by monitoring O-2 consumption in the presence of glucose at -0.7 V. The optimized biosensor showed a very good linearity between 0.05 and 2.5 x 10(-3) M with a 52 s response time and a detection limit (LOD) of 0.029 x 10(-3) M to glucose. Also, kinetic parameters, operational and storage stabilities were determined. K-m and I-max values were found as 4.6 x 10(-3) M and 2.49 mu A, respectively. It was also shown that no activity was lost during operational and storage conditions. Finally, proposed system was applied for glucose biomonitoring during fermentation in yeast culture where HPLC was used as the reference method to verify the data obtained by the proposed biosensor.
MACROMOLECULAR BIOSCIENCE

Suggestions

Electrochemical polymerization of 1-(4-nitrophenyl)-2,5-di(2-thienyl)-1 H-pyrrole as a novel immobilization platform for microbial sensing
Tuncagil, Sevinc; ODACI DEMİRKOL, DİLEK; Varis, Serhat; TİMUR, SUNA; Toppare, Levent Kamil (2009-09-01)
Two types of bacterial biosensor were constructed by immobilization of Gluconobacter oxydans and Pseudomonas fluorescens cells on graphite electrodes modified with the conducting polymer; poly(1-(4-nitrophenyl)-2,5-di(2-thienyl)-1 H-pyrrole) [SNS(NO2)]. The measurement was based on the respiratory activity of cells estimated by the oxygen consumption at -0.7 V due to the metabolic activity in the presence of substrate. As well as analytical characterization, the linear detection ranges, effects of electropo...
Design of Carbon Nanotube Modified Conducting Polymer for Biosensing Applications
Ozdemir, Caglar; Tuncagil, Sevinc; ODACI DEMİRKOL, DİLEK; TİMUR, SUNA; Toppare, Levent Kamil (2011-01-01)
An electrochemical biosensor with improved performance was designed through the immobilization of glucose oxidase (GOx) onto conducting polymer of 4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)benzenamine (SNS-NH2) modified with carbon nanotubes (CNTs). For the optimization and characterization of the biosensor, pH profile, enzyme loading, reproducibility, operational stability experiments were carried out. It was found that the use of CNTs in a biosensing system enhanced the biosensor response. The linear relati...
A novel promising biomolecule immobilization matrix: Synthesis of functional benzimidazole containing conducting polymer and its biosensor applications
Uzun, Sema Demirci; Unlu, Naime Akbasoglu; Sendur, Merve; Kanik, Fulya Ekiz; TİMUR, SUNA; Toppare, Levent Kamil (2013-12-01)
In order to construct a robust covalent binding between biomolecule and immobilization platform in biosensor preparation, a novel functional monomer 4-(4,7-di(thiophen-2-yl)-1H-benzo[d]imidazol-2yl)benzaldehyde (BIBA) was designed and successfully synthesized. After electropolymerization of this monomer, electrochemical and spectroelectrochemical properties were investigated in detail. To fabricate the desired biosensor, glucose oxidase (GOx) was immobilized as a model enzyme on the polymer coated graphite ...
Selenium containing conducting polymer based pyranose oxidase biosensor for glucose detection
Gokoglan, Tugba Ceren; SÖYLEMEZ, SANİYE; Kesik, Melis; Toksabay, Sinem; Toppare, Levent Kamil (2015-04-01)
A novel amperometric pyranose oxidase (PyOx) biosensor based on a selenium containing conducting polymer has been developed for the glucose detection. For this purpose, a conducting polymer; poly(4,7-bis(thieno[3,2-b]thiophen-2-yl)benzo[c][1,2,5] selenadiazole) (poly(BSeTT)) was synthesized via electropolymerisation on gold electrode to examine its matrix property for glucose detection. For this purpose, PyOx was used as the model enzyme and immobilised via physical adsorption technique. Amperometric detect...
A novel functional conducting polymer: synthesis and application to biomolecule immobilization
Kanik, Fulya Ekiz; Rende, Eda; TİMUR, SUNA; Toppare, Levent Kamil (2012-11-14)
A recently synthesized conducting polymer poly(TBT6-NH2); poly(6-(4,7-di(thiophen-2-yl)-2H-benzo [d][1,2,3]triazol-2-yl)hexan-1-amine) was utilized as a matrix for biomolecule immobilization. After successful electrochemical deposition the polymer poly(TBT6-NH2) on the graphite electrodes, immobilization of choline oxidase (ChO) was carried out. Due to the free amino functional groups of the polymeric structure, ChO molecules were successfully immobilized onto the polymer surface via covalent binding. For t...
Citation Formats
F. Ekiz, M. Yuksel, A. Balan, S. TİMUR, and L. K. Toppare, “Electrochemical Polymerization of (2-Dodecyl-4,7-di(thiophen-2-yl)-2H-benzo[d][1,2,3] triazole): A Novel Matrix for Biomolecule Immobilization,” MACROMOLECULAR BIOSCIENCE, pp. 1557–1565, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39680.