Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A LINEAR MATHEMATICAL-MODEL FOR THE SEISMIC INPLANE BEHAVIOR OF BRICK MASONRY WALLS .2. DETERMINATION OF MODEL PARAMETERS THROUGH OPTIMIZATION USING EXPERIMENTAL-DATA
Date
1984-01-01
Author
Sucuoğlu, Haluk
McNiven, Hugh
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
243
views
0
downloads
Cite This
The parameters appearing in the mixture and effective modulus models proposed in Part 1 are determined through optimization by matching theoretical and experimental responses. The optimization analysis is performed in frequency space. The response quantities chosen to be matched are the complex frequency response functions (experimental and theoretical) relating the Fourier transforms of top and base accelerations of the wall. Computations in optimization analysis are carried out by introducing an object (error) function and minimizing it using the Gauss‐Newton method. The results show that the mixture model is capable of predicting accurately the dynamic response of masonry walls up to a frequency which is well above the second modal frequency, whereas the effective modulus model describes the wall behaviour only up to the first modal frequency. Furthermore, it is shown that the mixture model is still valid when micro cracks, which may exist between the mortar and brick constituents, are present.
Subject Keywords
Geotechnical Engineering and Engineering Geology
,
Earth and Planetary Sciences (miscellaneous)
URI
https://hdl.handle.net/11511/39767
Journal
EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS
DOI
https://doi.org/10.1002/eqe.4290120304
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
A LINEAR MATHEMATICAL-MODEL FOR THE SEISMIC INPLANE BEHAVIOR OF BRICK MASONRY WALLS .1. THEORETICAL CONSIDERATIONS
Mengi, Yalçın; Sucuoğlu, Haluk; McNiven, Hugh (Wiley, 1984-01-01)
In this study two mathematical models are presented for the linear dynamic behaviour of masonry walls. The study is completed in three stages: experimental observations, selection of a mathematical model and the determination of model parameters through optimization analysis. In the present paper (Part 1) the theoretical analysis used in the development of the mathematical models is presented. Part 2 is devoted to the optimization analysis. Evaluation of the experimental data, which is described in detail ...
Evaluation of displacement coefficient method for seismically retrofitted buildings with various ductility capacities
Dicleli, Murat (Wiley, 2014-07-25)
This research study is aimed at evaluating the accuracy of the displacement coefficient method (DCM) of FEMA 440 and associated nonlinear static procedure (NLSP) for actual buildings with soft story mechanism and various ductility capacities. The DCM and associated NLSP are evaluated using two existing seismically vulnerable buildings with soft story mechanism. The buildings are first retrofitted using a ductile steel-brace-link system to represent those with good ductility capacity and then retrofitted wit...
An improvement to linear-elastic procedures for seismic performance assessment
Gunay, Mehmet Selim; Sucuoğlu, Haluk (Wiley, 2010-07-10)
An improved linear-elastic analysis procedure is developed in this paper as a simple approximate method for displacement-based seismic assessment of the existing buildings. The procedure is mainly based on reducing the stiffness of structural members that are expected to respond in the inelastic range in a single global iteration step. Modal spectral displacement demands are determined from the equal displacement rule. Response predictions obtained from the proposed procedure are evaluated comparatively by ...
Comparison of 2D versus 3D modeling approaches for the analysis of the concrete faced rock-fill Cokal Dam
Arıcı, Yalın (Wiley, 2013-12-01)
This paper's primary purpose is to compare the 2D and 3D analysis methodologies in investigating the performance of a concrete faced rock-fill dams under dynamic loading conditions. The state of stress on the face plate was obtained in both cases using a total strain based crack model to predict the spreading of cracks on the plate and the corresponding crack widths. Results of the 2D and 3D analyses agree well. Although significantly more demanding, 3D analyses have the advantage of predicting the followin...
Generalized force vectors for multi-mode pushover analysis of torsionally coupled systems
Kaatsız, Kaan; Sucuoğlu, Haluk (Wiley, 2014-10-25)
A generalized multi-mode pushover analysis procedure was developed for estimating the maximum inelastic seismic response of symmetrical plan structures under earthquake ground excitations. Pushover analyses are conducted with story-specific generalized force vectors in this procedure, with contributions from all effective modes. Generalized pushover analysis procedure is extended to three-dimensional torsionally coupled systems in the presented study. Generalized force distributions are expressed as the com...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Sucuoğlu and H. McNiven, “A LINEAR MATHEMATICAL-MODEL FOR THE SEISMIC INPLANE BEHAVIOR OF BRICK MASONRY WALLS .2. DETERMINATION OF MODEL PARAMETERS THROUGH OPTIMIZATION USING EXPERIMENTAL-DATA,”
EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS
, pp. 327–346, 1984, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39767.