Fast and accurate analysis of optical metamaterials using surface integral equations and the parallel multilevel fast multipole algorithm

Download
2013-09-13
We present fast and accurate simulations of optical metamaterials using surface integral equations and the multilevel fast multipole algorithm (MLFMA). Problems are formulated with the electric and magnetic current combined-field integral equation and solved iteratively with MLFMA, which is parallelized using the hierarchical strategy on distributed-memory architectures. Realistic metamaterials involving dielectric, perfectly conducting, and plasmonic regions of finite extents are solved rigorously with the developed implementation without any periodicity assumptions.

Suggestions

Fast and Accurate Analysis of Homogenized Metamaterials With the Surface Integral Equations and the Multilevel Fast Multipole Algorithm
Ergül, Özgür Salih (2011-01-01)
Fast and accurate analysis of double-negative materials (DNMs) with the surface integral equations and the multilevel fast multipole algorithm (MLFMA) is considered. DNMs, which are commonly used as simplified models of metamaterials at resonance frequencies, can be formulated with the surface integral equations. Two recently developed formulations-namely, the combined tangential formulation (CTF) and the electric and magnetic current combined-field integral equation (JMCFIE)-are used to formulate DNMs. Ite...
Rigorous Analysis of Double-Negative Materials with the Multilevel Fast Multipole Algorithm
Ergül, Özgür Salih (2012-02-01)
We present rigorous analysis of double-negative materials (DNMs) with surface integral equations and the multilevel fast multipole algorithm (MLFMA). Accuracy and efficiency of numerical solutions are investigated when DNMs are formulated with two recently developed formulations, i.e., the combined tangential formulation (CTF) and the electric and magnetic current combined-field integral equation (JMCHE). Simulation results on canonical objects are consistent with previous results in the literature on ordin...
Analysis of composite nanoparticles with surface integral equations and the multilevel fast multipole algorithm
Ergül, Özgür Salih (IOP Publishing, 2012-06-01)
Composite nanoparticles involving multiple parts with different material properties are analyzed rigorously with surface integral equations and the multilevel fast multipole algorithm. Accuracy and efficiency of the developed parallel implementation are demonstrated on spherical objects with dielectric, perfectly conducting, plasmonic, and double-negative regions. Significant effects of the formulation on numerical solutions are also considered to show the tradeoff between the efficiency and accuracy.
Analysis of double-negative materials with surface integral equations and the multilevel fast multipole algorithm
Ergül, Özgür Salih (2011-08-13)
We present a fast and accurate analysis of double-negative materials (DNMs) with surface integral equations and the multilevel fast multipole algorithm (MLFMA). DNMs are commonly used as simplified models of metamaterials at resonance frequencies and are suitable to be formulated with surface integral equations. However, realistic metamaterials and their models are usually very large with respect to wavelength and their accurate solutions require fast algorithms, such as MLFMA. We consider iterative solutio...
Computational Electromagnetic Analysis of Deformed Nanowires Using the Multilevel Fast Multipole Algorithm
Yilmaz, Akif; Karaosmanoglu, Bariscan; Ergül, Özgür Salih (2015-02-16)
We consider computational analysis of deformed nanowires and their arrays using a full-wave simulation environment based on integral-equation formulations and the multilevel fast multipole algorithm (MLFMA). Without requiring any periodicity assumptions, MLFMA allows for fast and accurate simulations of complex nanowire structures with three-dimensional geometries and random deformations. We present the results of hundreds of simulations, where deformed nanowires are considered as isolated, as well as in ar...
Citation Formats
Ö. S. Ergül, “Fast and accurate analysis of optical metamaterials using surface integral equations and the parallel multilevel fast multipole algorithm,” 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41703.