Perturbed Li-Yorke homoclinic chaos

2018-01-01
Akhmet, Marat
Fen, Mehmet Onur
Kashkynbayev, Ardak
It is rigorously proved that a Li-Yorke chaotic perturbation of a system with a homoclinic orbit creates chaos along each periodic trajectory. The structure of the chaos is investigated, and the existence of infinitely many almost periodic orbits out of the scrambled sets is revealed. Ott-Grebogi-Yorke and Pyragas control methods are utilized to stabilize almost periodic motions. A Duffing oscillator is considered to show the effectiveness of our technique, and simulations that support the theoretical results are depicted.
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS

Suggestions

Almost periodicity in chaos
Akhmet, Marat (2018-01-01)
Periodicity plays a significant role in the chaos theory from the beginning since the skeleton of chaos can consist of infinitely many unstable periodic motions. This is true for chaos in the sense of Devaney [1], Li-Yorke [2] and the one obtained through period-doubling cascade [3]. Countable number of periodic orbits exist in any neighborhood of a structurally stable Poincaré homoclinic orbit, which can be considered as a criterion for the presence of complex dynamics [4]-[6]. It was certified by Shilniko...
Persistence of Li-Yorke chaos in systems with relay
Akhmet, Marat; Kashkynbayev, Ardak (University of Szeged, 2017-01-01)
It is rigorously proved that the chaotic dynamics of the non-smooth system with relay function is persistent even if a chaotic perturbation is applied. We consider chaos in a modified Li-Yorke sense such that there are infinitely many almost periodic motions embedded in the chaotic attractor. It is demonstrated that the system under investigation possesses countable infinity of chaotic sets of solutions. An example that supports the theoretical results is represented. Moreover, a chaos control procedure bas...
Bound state solution of the Schrodinger equation for Mie potential
Sever, Ramazan; Bucurgat, Mahmut; TEZCAN, CEVDET; Yesiltas, Oezlem (Springer Science and Business Media LLC, 2008-02-01)
Exact solution of Schrodinger equation for the Mie potential is obtained for an arbitrary angular momentum. The energy eigenvalues and the corresponding wavefunctions are calculated by the use of the Nikiforov-Uvarov method. Wavefunctions are expressed in terms of Jacobi polynomials. The bound states are calculated numerically for some values of l and n with n <= 5. They are applied to several diatomic molecules.
Hyperbolic conservation laws on manifolds. An error estimate for finite volume schemes
Lefloch, Philippe G.; Okutmuştur, Baver; Neves, Wladimir (Springer Science and Business Media LLC, 2009-07-01)
Following Ben-Artzi and LeFloch, we consider nonlinear hyperbolic conservation laws posed on a Riemannian manifold, and we establish an L (1)-error estimate for a class of finite volume schemes allowing for the approximation of entropy solutions to the initial value problem. The error in the L (1) norm is of order h (1/4) at most, where h represents the maximal diameter of elements in the family of geodesic triangulations. The proof relies on a suitable generalization of Cockburn, Coquel, and LeFloch's theo...
Asymptotic behavior of solutions of differential equations with piecewise constant arguments
Akhmet, Marat (Elsevier BV, 2008-09-01)
The main goal of the work is to obtain sufficient conditions for the asymptotic equivalence of a linear system of ordinary differential equations and a quasilinear system of differential equations with piecewise constant argument.
Citation Formats
M. Akhmet, M. O. Fen, and A. Kashkynbayev, “Perturbed Li-Yorke homoclinic chaos,” ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, pp. 1–18, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39832.