Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Current control of single-phase VSC systems with inductor saturation using inverse dynamic model-based compensation
Date
2019-12-01
Author
Ozkan, Ziya
Hava, Ahmet Masum
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
277
views
0
downloads
Cite This
In voltage-source converter (VSC) systems, utilization of filter inductors with deep saturation characteristics is often advantageous due to the improved size, cost, and efficiency. However, with the use of conventional current regulation (CCR) methods, the inductor saturation results in significant dynamic performance loss and poor steady-state current waveform quality. This paper proposes the inverse dynamic model (IDM)-based compensation method to overcome these performance issues. The method converts the nonlinear inductor of the plant to a fictitious linear inductor such that linear current regulators can perform satisfactorily. In conjunction, identification of L-R parameters is performed to obtain IDM of the system within an acceptable range of sensitivity yielding satisfactory performance. The performance issues of CCR methods with saturable inductor are demonstrated by simulations and experiments. Then, the proposed method is experimentally verified on a single-phase 1.5-kW grid-connected VSC. The performance improvement over the CCR methods is verified by a detailed comparison of experimental waveforms.
Subject Keywords
Control and Systems Engineering
,
Electrical and Electronic Engineering
URI
https://hdl.handle.net/11511/39857
Journal
IEEE Transactions on Industrial Electronics
DOI
https://doi.org/10.1109/tie.2019.2892682
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Inductor Saturation Compensation With Resistive Decoupling for Single-Phase Controlled VSC Systems
ÖZKAN, ZİYA; Hava, Ahmet Masum (Institute of Electrical and Electronics Engineers (IEEE), 2020-02-01)
In voltage-source converter systems, utilization of filter inductors with deep saturation characteristics is often advantageous because of the improved size, cost, and efficiency. However, with the use of conventional current regulation methods, the inductor saturation results in significant dynamic performance loss and poor steady-state current waveform quality. This paper proposes the saturation compensation with resistive decoupling (SCRD) method to overcome these performance issues. The method converts ...
Predicted impact of collector and zeolite choice on the thermodynamic and economic performance of a solar-powered adsorption cooling system
Baker, Derek Keıth (Informa UK Limited, 2007-04-01)
Transient thermodynamic and capital cost models for an intermittent solar-powered adsorption cooling system are presented. The models are used to predict size and cost trends as the type of zeolite and collector, and maximum zeolite temperature (T-Z,T-Max), are varied. The best synthetic and natural zeolites considered have similar performance. The minimum cost system uses a flat plate collector for T-Z,T- Max < 160 degrees C and an evacuated tube collector for T-Z,T- Max > 160 degrees C. Collector costs do...
OPTIMAL CONTROLLER DESIGN FOR SPEED GOVERNORS OF HYDROELECTRIC POWER PLANT
Altinoz, Okkes Tolga; KOŞALAY, İLHAN; Gezer, Derya (VSB - Technical University of Ostrava, 2020-06-01)
Speed governors have critical importance on hydroelectric power plants, which are adjusted to the rotating speed of hydroelectric generation based on load demand of the grid. The rotating speed is the main factor to balance power generation and load demand. The well-designed controller is needed to control speed governors with high accuracy. A well-defined model is needed to obtain desired control structure. Therefore, in this study, initially, the mathematical model of a hydroelectric power plant is obtain...
Active clamped ZVS forward converter with soft-switched synchronous rectifier for high efficiency, low output voltage applications
Acik, A; Cadirci, I (Institution of Engineering and Technology (IET), 2003-03-01)
The analysis, design, and implementation of an active clamped ZVS forward converter equipped with a soft-switched synchronous rectifier (ACFC-SR), proposed for high-efficiency low output voltage DC-DC converter applications, is presented. The converter efficiency is maximised due to soft switching of the main, active clamp, synchronous rectifier, and freewheeling MOSFET switches. The operating principles of the ACFC-SR are analysed in detail, and the converter performance is compared with that of alternativ...
Simple derivative-free nonlinear state observer for sensorless AC drives
Akin, Bilal; Orguner, Umut; Ersak, Aydin; Ehsani, Mehrdad (Institute of Electrical and Electronics Engineers (IEEE), 2006-10-01)
In this paper, a new Kalman filtering technique, unscented Kalman filter (UKF), is utilized both experimentally and theoretically as a state estimation tool in field-oriented control (FOC) of sensorless ac drives. Using the advantages of this recent derivative-free nonlinear estimation tool, rotor speed and dq-axis fluxes of an induction motor are estimated only with the sensed stator currents and voltages information. In order to compare the estimation performances of the extended Kalman filter (EKF) and U...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Z. Ozkan and A. M. Hava, “Current control of single-phase VSC systems with inductor saturation using inverse dynamic model-based compensation,”
IEEE Transactions on Industrial Electronics
, pp. 9268–9277, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39857.