Predicted impact of collector and zeolite choice on the thermodynamic and economic performance of a solar-powered adsorption cooling system

Transient thermodynamic and capital cost models for an intermittent solar-powered adsorption cooling system are presented. The models are used to predict size and cost trends as the type of zeolite and collector, and maximum zeolite temperature (T-Z,T-Max), are varied. The best synthetic and natural zeolites considered have similar performance. The minimum cost system uses a flat plate collector for T-Z,T- Max < 160 degrees C and an evacuated tube collector for T-Z,T- Max > 160 degrees C. Collector costs dominate the system costs. In some cases, the zeolite's adsorption characteristics are predicted to exert a larger influence on system cost than the actual cost of the zeolite.


Altinoz, Okkes Tolga; KOŞALAY, İLHAN; Gezer, Derya (VSB - Technical University of Ostrava, 2020-06-01)
Speed governors have critical importance on hydroelectric power plants, which are adjusted to the rotating speed of hydroelectric generation based on load demand of the grid. The rotating speed is the main factor to balance power generation and load demand. The well-designed controller is needed to control speed governors with high accuracy. A well-defined model is needed to obtain desired control structure. Therefore, in this study, initially, the mathematical model of a hydroelectric power plant is obtain...
Current control of single-phase VSC systems with inductor saturation using inverse dynamic model-based compensation
Ozkan, Ziya; Hava, Ahmet Masum (Institute of Electrical and Electronics Engineers (IEEE), 2019-12-01)
In voltage-source converter (VSC) systems, utilization of filter inductors with deep saturation characteristics is often advantageous due to the improved size, cost, and efficiency. However, with the use of conventional current regulation (CCR) methods, the inductor saturation results in significant dynamic performance loss and poor steady-state current waveform quality. This paper proposes the inverse dynamic model (IDM)-based compensation method to overcome these performance issues. The method converts th...
Incorporation of generator maintenance scheduling with long-term power sector forecasting and planning studies
Ilseven, Engin; Göl, Murat (Institution of Engineering and Technology (IET), 2020-07-01)
The objective of this study is to propose a dynamic generator maintenance scheduling (GMS) algorithm for long-term power sector forecasting and planning studies in which electricity price and the resulting supply composition are determined with merit-order dispatch. Compatible with the GMS algorithm, a reasonable strategy for the utilisation of storage hydropower plants along with clear definitions for each stage including must-run renewable electricity generation modelling, calculation of reserve capacity,...
Self-excitation of induction motors compensated by permanently connected capacitors and recommendations for IEEE Std 141-1993
Ermiş, Muammer; Cadirci, I; Zenginobuz, G; Tezcan, H (Institute of Electrical and Electronics Engineers (IEEE), 2003-03-01)
Self-excitation of induction motors compensated by permanently connected capacitors is investigated in this paper. Theoretical analyses of self, excitation phenomenon are carried out by using some simplified equivalent circuits, and a hybrid mathematical model in ABC/dq axes, respectively, in steady state and transient state. An unusual operating condition about water pumping stations is reported, in which water within the pipeline may drive the motor in the reverse direction at speeds higher than synchrono...
UCTUG, MY; ESKANDARZADEH, I; INCE, H (Institution of Engineering and Technology (IET), 1994-03-01)
In the paper, a double output induction generator (DOIG) driven by a wind turbine is studied. The reference frame model of the system including a fully controlled rectifier on the rotor side is derived. Based on this model, the steady-state equations are obtained in terms of the stator and rotor currents, rotor voltage and the slip. These equations are solved both with a model of a wind turbine and that of a DHC motor driving the DOIG. The results are compared with experimental ones. Finally, an optimisatio...
Citation Formats
D. K. Baker, “Predicted impact of collector and zeolite choice on the thermodynamic and economic performance of a solar-powered adsorption cooling system,” EXPERIMENTAL HEAT TRANSFER, pp. 103–122, 2007, Accessed: 00, 2020. [Online]. Available: