Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Effect of carboxylic acid crosslinking of cellulose membranes on nanofiltration performance in ethanol and dimethylsulfoxide
Date
2019-10-01
Author
Konca, Kubra
Çulfaz Emecen, Pınar Zeynep
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
250
views
0
downloads
Cite This
Cellulose membranes were fabricated via phase inversion using 1-ethyl-3-methylimidazolium acetate as solvent and acetone as volatile cosolvent. 1,2,3,4-butanetetracarboxylic acid was used to partially crosslink the hydroxyl groups of cellulose, thereby changing mechanical properties of the membranes and the interactions with solvents, ethanol and dimethyl sulfoxide, and solutes. Rejection of dyes of similar size, Bromothymol Blue, Rose Bengal and Crystal Violet were shown to correlate inversely with sorption in the membranes, with the higher the sorption coefficient, the lower the rejection observed. This shows that the solute-membrane affinity is the determining factor in solute rejection in cellulose membranes. Upon crosslinking, the rejection of positively charged Crystal Violet decreased, that of negatively charged Rose Bengal increased and 93% rejection of Rose Bengal in DMSO was obtained with the crosslinked membrane. This change upon crosslinking was attributed to altered electrostatic interactions between the dyes and the membrane surface, as free carboxylic acid groups of the crosslinker leaves the membrane with a net the negative charge. Overall, it was shown that cellulose membranes can perform stably in a harsh aprotic solvent and that the rejection, which is determined by membrane-solute affinity can be tuned with carboxylic acid crosslinking.
Subject Keywords
Cellulose
,
Butanetetracarboxylic acid
,
Crosslinking
,
Dimethylsulfoxide
,
OSN
URI
https://hdl.handle.net/11511/39936
Journal
JOURNAL OF MEMBRANE SCIENCE
DOI
https://doi.org/10.1016/j.memsci.2019.117175
Collections
Department of Chemical Engineering, Article
Suggestions
OpenMETU
Core
Effect of solvent choice on cellulose acetate membrane fabrication by phase inversion and deacetylation by alkaline hydrolysis
Tekin, Fatma Seden; Çulfaz Emecen, Pınar Zeynep; Department of Chemical Engineering (2022-8)
In this study, the effect of solvent choice on cellulose acetate (CA) membrane morphology and performance was investigated to relate this to the thermodynamics and kinetics of phase inversion. Three different solvent systems were used, which are dimethyl sulfoxide (DMSO), the mixture of DMSO: acetone (DA) and DMSO: acetic acid (DHAc) in the ratio of 1:1. Water was used as non-solvent. Acetone and acetic acid were chosen due to their similar solvent quality for cellulose acetate based on Hansen solubility pa...
Cellulose membranes for organic solvent nanofiltration
Sukma, F. M.; Çulfaz Emecen, Pınar Zeynep (2018-01-01)
Cellulose membranes were fabricated by phase inversion from solutions of cellulose in 1-ethyl-3-methylimidazolium acetate ([EMIM] OAc) as solvent and acetone as volatile cosolvent. The rejection of Bromothymol Blue ( 624 Da) in ethanol increased and the permeance decreased by increasing the cellulose concentration in the solution prior to coagulation, either by having more cellulose in the starting solution or by evaporating the volatile cosolvent. Drying the membranes after coagulation further increased th...
Controlling Cellulose Membrane Performance via Solvent Choice during Precursor Membrane Formation
Tekin, Fatma Seden; Çulfaz Emecen, Pınar Zeynep (2023-03-10)
Fabrication of cellulose membranes by alkaline hydrolysis of cellulose acetate (CA) membranes is a simple alternative method to preparing cellulose membranes via phase inversion from their ionic liquid solutions. In this study, three different solvent systems were used to fabricate cellulose acetate membranes by phase inversion, which are dimethyl sulfoxide and its mixtures with acetone and acetic acid. Acetone as cosolvent led to an asymmetric morphology with the densest selective layer, whereas acetic aci...
Effect of Polymers on the Rheological Properties of KCl Polymer Type Drilling Fluid
Kök, Mustafa Verşan (2005-05-01)
In the course of this research, the effect of two polymers (xanthan gum and polyanionic cellulose) on the rheological properties of KCl/polymer type drilling fluids was investigated. Non-Newtonian drilling fluids are conventionally characterized by rheological models (Bingham Plastic, Power Law, Casson, Herchel-Bulkley and Robertson-Stiff). In this research, forty-five KCl/polymer data sets of varying compositions are prepared. Polymer addition to the system has affected the model and caused a variation of ...
Celulose Membranes for Organic Solvent Nanofiltration
Çulfaz Emecen, Pınar Zeynep; Elif Nur, Durmaz (2015-11-19)
Cellulose membranes were fabricated by phase inversion from solutions of cellulose in 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc) as solvent and acetone as volatile cosolvent. The rejection of Bromothymol Blue (624 Da) in ethanol increased and the permeance decreased by increasing the cellulose concentration in the solution prior to coagulation, either by having more cellulose in the starting solution or by evaporating the volatile cosolvent. Drying the membranes after coagulation further increased the ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
K. Konca and P. Z. Çulfaz Emecen, “Effect of carboxylic acid crosslinking of cellulose membranes on nanofiltration performance in ethanol and dimethylsulfoxide,”
JOURNAL OF MEMBRANE SCIENCE
, pp. 0–0, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39936.