Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Fatigue Crack Growth Under Variable Amplitude Loading Through XFEM
Date
2016-06-24
Author
Dirik, Haydar
Yalçınkaya, Tuncay
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
159
views
0
downloads
Cite This
Predicting fatigue crack growth (FCG) rate and path under variable amplitude loading (VAL) is a crucial issue in damage tolerant design commonly used in aerospace industry. The aim of the current study is to predict FCG life under VAL through Extended Finite Element Method (XFEM) and to explicitly illustrate both FCG life and crack propagation. For this purpose an algorithm is developed and integrated in ABAQUS software to analyze 3D crack propagation under VAL using Modified Generalized Willenborg (MGW) retardation model. The results are compared with NASGRO crack propagation software and experimental FCG test data on 7075-T6 aluminum alloy under various over load (OL) and over load-under load (OL-UL) conditions which exhibit a good agreement.
Subject Keywords
Fatigue crack growth
,
Variable amplitude loading
,
XFEM
URI
https://hdl.handle.net/11511/40026
DOI
https://doi.org/10.1016/j.prostr.2016.06.384
Conference Name
21st European Conference on Fracture (ECF)
Collections
Department of Aerospace Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Fatigue crack growth analysis models for functionally graded materials
Dağ, Serkan; YILDIRIM, BORA (2006-10-18)
The objective of this study is to develop crack growth analysis methods for functionally graded materials (FGMs) subjected to mode I cyclic loading. The study presents finite elements based computational procedures for both two and three dimensional problems to examine fatigue crack growth in functionally graded materials. Developed methods allow the computation of crack length and generation of crack front profile for a graded medium subjected to fluctuating stresses. The results presented for an elliptica...
Defect acceptability under full-scale fretting fatigue tests for railway axles
Foletti, S.; Beretta, S.; Gurer, G. (2016-05-01)
This paper presents a new approach based on the application of a multiaxial high cycle fatigue criterion together with the use of El-Haddad correction for investigation of fretting fatigue in railway axles. Stress path along the axle-wheel contact, determined by the FE analysis, was implemented into different multiaxial fatigue criteria in order to predict critical sites of nucleation. The equivalent fatigue limit expressed by the applied criterion is compared with the crack size dependent fatigue limit des...
Stochastic approach in reserve estimation
Ülker, Emine Buket; Kök, Mustafa Verşan; Department of Petroleum and Natural Gas Engineering (2004)
Geostatistics and more specifically stochastic modeling of reservoir heterogeneities are being increasingly considered by reservoir analysts and engineers for their potential in generating more accurate reservoir models together with usable measures of spatial uncertainty. Geostatistics provides a probabilistic framework and a toolbox for data analysis with early integration of information. The uncertainty about the spatial distribution of critical reservoir parameters is modeled and transferred all the way...
Development of a computer program for the analysis of fatigue crack growth
Dalgıç, Ali Murtaza; Bilir, Ömer Gündüz; Kadıoğlu, Suat; Department of Mechanical Engineering (2002)
In this study, a computer program is developed for fatigue crack propagation analysis of metal alloys and random fiber composites. The developed program takes the fatigue crack propagation experiment data in the form of crack length vs. number of cycles from the user. The user also, selects the crack geometry and defines loading conditions of the test specimen. Developed program analyze the experimental data and evaluates crack growth rate and stress intensity range. For the calculated or ready crack growth...
Overlapping Lattice Simulation of Concrete Gravity Dam Collapse Simulations
SOYSAL, BERAT FEYZA; Aydın, Beyazıt Bestami; Tuncay, Kağan; Arıcı, Yalın; Binici, Barış (2017-09-01)
Estimating the collapse limit state of concrete gravity dams within the framework of performance based design is challenging due to the uncertainty in modelling the response of these systems and the strong dependence of the behavior on the ground motion. The purpose of the study is to investigate the seismic expected damage levels by using the overlapping lattice modeling (OLM) approach with incremental dynamic analysis (IDA) for two representative dam monoliths. OLM employs pin connected bar elements exten...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Dirik and T. Yalçınkaya, “Fatigue Crack Growth Under Variable Amplitude Loading Through XFEM,” Catania, ITALY, 2016, vol. 2, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40026.