Defect acceptability under full-scale fretting fatigue tests for railway axles

2016-05-01
Foletti, S.
Beretta, S.
Gurer, G.
This paper presents a new approach based on the application of a multiaxial high cycle fatigue criterion together with the use of El-Haddad correction for investigation of fretting fatigue in railway axles. Stress path along the axle-wheel contact, determined by the FE analysis, was implemented into different multiaxial fatigue criteria in order to predict critical sites of nucleation. The equivalent fatigue limit expressed by the applied criterion is compared with the crack size dependent fatigue limit described by El-Haddad correction in order to define a defect size acceptability criterion. Verification of the proposed approach was done by post-test failure investigation of the full-scale axle tests conducted as a part of Euraxles project. Scanning electron microscope (SEM) examination of the failed press-fit sections revealed a critical defect size in the order of 200 gm in depth for non-propagating cracks. The obtained results were found to be consistent with the estimations made by the proposed approach.
INTERNATIONAL JOURNAL OF FATIGUE

Suggestions

Vibration Fatigue Analysis of a Cantilever Beam Using Different Fatigue Theories
Eldoğan, Yusuf; Ciğeroğlu, Ender (2014-02-11)
In this study, vibration fatigue analysis of a cantilever beam is performed using an in-house numerical code. Finite element model (FEM) of the cantilever beam verified by tests is used for the analysis. Several vibration fatigue theories are used to obtain fatigue life of the cantilever beam for white noise random input and the results obtained are compared with each other. Fatigue life calculations are repeated for different damping ratios and the effect of damping ratio is studied. Moreover, using strain...
Fatigue Crack Growth Under Variable Amplitude Loading Through XFEM
Dirik, Haydar; Yalçınkaya, Tuncay (2016-06-24)
Predicting fatigue crack growth (FCG) rate and path under variable amplitude loading (VAL) is a crucial issue in damage tolerant design commonly used in aerospace industry. The aim of the current study is to predict FCG life under VAL through Extended Finite Element Method (XFEM) and to explicitly illustrate both FCG life and crack propagation. For this purpose an algorithm is developed and integrated in ABAQUS software to analyze 3D crack propagation under VAL using Modified Generalized Willenborg (MGW) re...
Numerical prediction and experimental investigation of fretting fatigue crack initiation at railway axle - wheel contacts
Gürer, Göksu; Gür, Cemil Hakan; Department of Metallurgical and Materials Engineering (2017)
The aim of this thesis is to develop a procedure based on the multi-axial fatigue theories that can be used at the design stage for minimizing fretting fatigue failures of the railway axles. The premature fretting fatigue failure of the press-fitted wheel-axle assembly was investigated by means of mechanical and metallurgical methods. First, the loading path obtained through finite element analysis was implemented into the stress-based multiaxial fatigue models to predict possible sites of crack initiation....
Overal, performance prediction of turbo rotary compound (turc) engine using simulation results of engine components
Karaca, Mehmet; Akmandor, İbrahim Sinan; Department of Aerospace Engineering (2005)
The thesis proposes an overall performance estimation procedure for a new turbo-rotary compound engine (TURC) and an associated novel thermodynamic cycle. In this engine, two or multiple spools are lined up in series within the engine. In the front spool, positive displacement rotary vane type turbines drive axial compressor the performance of which were estimated using stage stacking calculations. In the back spool, axial turbine stages drive positive displacement rotary vane type compressors, the performa...
Fatigue Behavior of Welded API 5L X70 Steel Used in Pipelines
Turhan, Sermin Ozlem; Motameni, Ali; Gürbüz, Rıza (2020-08-01)
In this study, fatigue failure behavior of welded X70 pipeline steel was investigated by rotating bar bending fatigue tests performed at room temperature.S-Ncurves of base metal, weld and heat-affected zone (HAZ) were plotted. Tension tests, hardness measurements and Charpy V-notched impact tests were carried out for mechanical characterization. Samples were examined with optical microscope and scanning electron microscope (SEM) microstructurally. Fracture surfaces were examined with SEM. In addition to fra...
Citation Formats
S. Foletti, S. Beretta, and G. Gurer, “Defect acceptability under full-scale fretting fatigue tests for railway axles,” INTERNATIONAL JOURNAL OF FATIGUE, pp. 34–43, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66959.