A low-cost uncooled infrared microbolometer detector in standard CMOS technology

Tezcan, DS
Eminoglu, S
Akın, Tayfun
This paper reports the development of a low-cost uncooled infrared microbolometer detector using a commercial 0.8 mum CMOS process, where the CMOS n-well layer is used as the infrared sensitive material. The n-well is suspended by front-end bulk-micromachining of the fabricated CMOS dies using electrochemical etch-stop technique in TMAH. Since this approach does not require any lithography or infrared sensitive material deposition after CMOS fabrication, the detector cost is almost equal to the CMOS chip cost. The n-well has a TCR of 0.5-0.7%/K, relatively low compared to state-of-the-art microbolometer materials; however, it has negligible 1/f noise due to its single crystal structure. The use of polysilicon interconnects on the support arms instead of metal reduces the overall pixel TCR to 0.34%/K, but provides a better performance due to improved thermal isolation. Measurements show that such a fabricated pixel with 74 mum x 74 mum pixel area provides a thermal conductance of 0.62 muW/K, a thermal time constant of 21 ms, a dc responsivity of 9250 V/W, and a detectivity of 2.0 x 10(9) cmHz(1)/(2)/W with a total noise of 0.82 muV for a 4 kHz bandwidth. Based on this pixel, a 16 x 16 prototype focal plane array (FPA) with 80 pm x 80 mum pixel size and 13% fill factor has been implemented, where built-in diodes are used to simplify array scanning, at the expense of reduced overall pixel TCR of 0.24%/K. The n-well microbolometer array with a simple readout scheme provides a responsivity of 2000 V/W, a detectivity of 2.6 x 10(8) cmHz(1)/(2)/W, and an estimated NETD of 200 mK at 0.5 Hz frame rate. Considering that this performance can be further improved with low noise readout circuits, the CMOS n-well microbolometer is a cost-effective approach to implement very low-cost uncooled infrared detector arrays with reasonable performance.


An optical fiber radiation sensor for remote detection of radiological materials
Klein, DM; Yukihara, EG; Bulur, Enver; Durham, JS; Akselrod, MS; McKeever, SWS (Institute of Electrical and Electronics Engineers (IEEE), 2005-08-01)
This paper demonstrates the feasibility of a portable radiation sensor system that uses the pulsed optically stimulated luminescence technique to remotely interrogate an aluminum oxide (Al2O3:C) radiation sensor via an optical fiber. The objective is to develop a system for applications requiring simple and inexpensive sensors for widespread monitoring of ionizing radiation levels, which can be remotely interrogated at regular periods with little or no human intervention and are easy to install, operate, an...
An on-die ultra-low voltage DC-DC step-up converter with voltage doubling LC-tank
Jayaweera, H. M. P. C.; Pathirana, W. P. M. R.; Muhtaroglu, Ali (IOP Publishing; 2016-12-01)
In this paper we report the design, characterization and verification of a novel on-die ultra-low voltage DC-DC converter circuit for energy harvester applications in 0.18 mu m complementary metal oxide semiconductor (CMOS) technology. The circuit self-starts, does not use off-chip components, and is thus suitable for use in highly integrated low cost systems. The first version of the design has a five-stage charge-pump stimulated by an oscillator with two center-tap inductors. It is validated on a test chi...
A wireless batch sealed absolute capacitive pressure sensor
Akar, O.; Akın, Tayfun; Najafi, K. (Elsevier BV, 2001-12-15)
This paper reports the development of an absolute wireless pressure sensor that consists of a capacitive sensor and a gold-electroplated planar coil. Applied pressure deflects a 6 mum-thin silicon diaphragm, changing the capacitance formed between it and a metal electrode supported on a glass substrate. The resonant frequency of the LC circuit formed by the capacitor and the inductor changes as the capacitance changes; this change is sensed remotely through inductive coupling, eliminating the need for wire ...
Room-temperature scanning Hall probe microscope (RT-SHPM) imaging of garnet films using new high-performance InSb sensors
Oral, Ahmet; DEDE, M; MASUDA, H; OKAMOTO, A; SHİBASAKİ, I; SANDHU, A (Institute of Electrical and Electronics Engineers (IEEE), 2002-09-01)
High-performance InSb micro-HaIl sensors were fabricated by optical lithography and incorporated in a room-temperature scanning Hall probe microscope for imaging of localized magnetic fluctuations in close proximity to the surfaces of crystalline uniaxial garnet films. The room-temperature noise figure of the InSb sensors was 6-10 mG/v/Hz, which is an order of magnitude better than GaAs-AlGaAs two-dimensional electron gas sensors used to date.
A simple single-mode fiber loss measurement scheme in the C-band based on fiber loop-cavity ringdown spectroscopy
Berberoglu, Halil; Altan, Hakan (Elsevier BV, 2014-04-15)
An extremely sensitive and simple fiber loop-cavity ringdown spectroscopy (FL-CRDS) setup has been designed based on a turn-key nanosecond pulse laser source operating at 1535 nm. The system sensitivity is demonstrated to be approximately 0.01 dB after extracting the characteristic macrobend loss curve of a standard single mode fiber (SMF-28). The experiment demonstrated that the oscillatory behavior in the rapid loss due to the increasing curvature could be seen for single turn bare fibers with radii of cu...
Citation Formats
D. Tezcan, S. Eminoglu, and T. Akın, “A low-cost uncooled infrared microbolometer detector in standard CMOS technology,” IEEE TRANSACTIONS ON ELECTRON DEVICES, pp. 494–502, 2003, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40067.