A wireless batch sealed absolute capacitive pressure sensor

Akar, O.
Akın, Tayfun
Najafi, K.
This paper reports the development of an absolute wireless pressure sensor that consists of a capacitive sensor and a gold-electroplated planar coil. Applied pressure deflects a 6 mum-thin silicon diaphragm, changing the capacitance formed between it and a metal electrode supported on a glass substrate. The resonant frequency of the LC circuit formed by the capacitor and the inductor changes as the capacitance changes; this change is sensed remotely through inductive coupling, eliminating the need for wire connection or implanted telemetry circuits. The sensor is fabricated using the dissolved-wafer process and utilizes a boron-doped silicon diaphragm supported on an insulating glass substrate. The complete sensor measures 2.6 mm x 1.6 mm in size and incorporates a 24-turns gold-electroplated coil that has a measured inductance of 1.2 muH. The sensor is designed to provide a resonant frequency change in the range 95-103 MHz for a pressure change in the range 0-50 mmHg with respect to ambient pressure, providing a pressure responsivity and sensitivity of 160 kHz/mmHg and 1553 ppm/mmHg, respectively. The measured pressure responsivity and sensitivity of the fabricated device are 120 kHz/mmHg and 1579 ppm/mmHg, respectively.
Sensors and Actuators, A: Physical


A low-cost uncooled infrared microbolometer detector in standard CMOS technology
Tezcan, DS; Eminoglu, S; Akın, Tayfun (Institute of Electrical and Electronics Engineers (IEEE), 2003-02-01)
This paper reports the development of a low-cost uncooled infrared microbolometer detector using a commercial 0.8 mum CMOS process, where the CMOS n-well layer is used as the infrared sensitive material. The n-well is suspended by front-end bulk-micromachining of the fabricated CMOS dies using electrochemical etch-stop technique in TMAH. Since this approach does not require any lithography or infrared sensitive material deposition after CMOS fabrication, the detector cost is almost equal to the CMOS chip co...
A Compact Angular Rate Sensor System Using a Fully Decoupled Silicon-on-Glass MEMS Gyroscope
Alper, Said Emre; Temiz, Yuksel; Akın, Tayfun (Institute of Electrical and Electronics Engineers (IEEE), 2008-12-01)
This paper presents the development of a compact single-axis angular rate sensor system employing a 100-mu m-thick single-crystal silicon microelectromechanical systems gyroscope with an improved decoupling arrangement between the drive and sense modes. The improved decoupling arrangement of the gyroscope enhances the robustness of sensing frame against drive-mode oscillations and therefore minimizes mechanical crosstalk between the drive and sense modes, yielding a small bias instability. The gyroscope cor...
A high-performance silicon-on-insulator MEMS gyroscope operating at atmospheric pressure
Alper, Said Emre; Azgın, Kıvanç; Akın, Tayfun (Elsevier BV, 2007-03-30)
This paper presents a new, high-performance silicon-on-insulator (SOI) MEMS gyroscope with decoupled oscillation modes. The gyroscope structure allows it to achieve matched-resonance-frequencies, large drive-mode oscillation amplitude, high sense-mode quality factor, and low mechanical cross-talk. The gyroscope is fabricated through the commercially available SOIMUMPS process of MEMSCAP Inc. The fabricated gyroscope has minimum capacitive sense gaps of 2.6 mu m and a structural silicon thickness of 25 mu m,...
A sol-gel derived AgCl photochromic coating on glass for SERS chemical sensor application
Volkan, Mürvet; Vo-Dinh, T (Elsevier BV, 2005-05-13)
A new optically translucent material has been prepared that acts as a substrate for surface-enhanced Raman spectroscopy. This material is a silica matrix, synthesized by the sol-gel method and containing in situ precipitated AgCl particles which serve as precursors for nanoparticles of elemental silver. Reduction of AgCl to silver nanoparticles is achieved by UV irradiation. The SERS-active medium was distributed on glass supports (cover glass slips, 0.5 turn thick), hence producing thin, sturdy, and optica...
A Dual-Resonator Temperature Sensing Approach With Time Base Error Suppression
Kaya, Onurcan; Azgın, Kıvanç (Institute of Electrical and Electronics Engineers (IEEE), 2020-01-15)
In this study we present a novel dual-resonator temperature sensor which can be embedded in other MEMS sensors for improved thermal compensation and on-the-run calibration. For accurate temperature measurements, the proposed method mitigates time base errors in frequency counting, eliminates the need for a highly accurate reference clock and can cancel out the effects of aging of the time base without using a calibration process. The sensor structure is composed of a strain amplifying beam and two Double En...
Citation Formats
O. Akar, T. Akın, and K. Najafi, “A wireless batch sealed absolute capacitive pressure sensor,” Sensors and Actuators, A: Physical, pp. 29–38, 2001, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/49269.