Effect of Turbine Blade Tip Cooling Configuration on Tip Leakage Flow and Heat Transfer

2020-02-01
Sakaoglu, Sergen
Kahveci, Harika Senem
The pressure difference between suction and pressure sides of a turbine blade leads to tip leakage flow, which adversely affects the first-stage high-pressure (HP) turbine blade tip aerodynamics. In modern gas turbines, HP turbine blade tips are exposed to extreme thermal conditions requiring cooling. If the coolant jet directed into the blade tip gap cannot counter the leakage flow, it will simply add up to the pressure losses due to leakage. Therefore, the compromise between the aerodynamic loss and the gain in tip-cooling effectiveness must be optimized. In this paper, the effect of tip-cooling configuration on the turbine blade tip is investigated numerically from both aerodynamics and thermal aspects to determine the optimum configuration. Computations are performed using the tip cross section of GE-E3 HP turbine first-stage blade for squealer and flat tips, where the number, location, and diameter of holes are varied. The study presents a discussion on the overall loss coefficient, total pressure loss across the tip clearance, and variation in heat transfer on the blade tip. Increasing the coolant mass flow rate using more holes or by increasing the hole diameter results in a decrease in the area-averaged Nusselt number on the tip floor. Both aerodynamic and thermal response of squealer tips to the implementation of cooling holes is superior to their flat counterparts. Among the studied configurations, the squealer tip with a larger number of cooling holes located toward the pressure side is highlighted to have the best cooling performance.
JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME

Suggestions

Effect of Turbine Blade Tip Cooling Configuration on Tip Leakage Flow and Heat Transfer
Sakaoğlu, Sergen; Kahveci, Harika Senem (2019-06-21)
The pressure difference between suction and pressure sides of a turbine blade leads to the so-called phenomenon, the tip leakage flow, which most adversely affects the first-stage high-pressure (HP) turbine blade tip aerodynamics. In modern gas turbines, HP turbine blade tips are also exposed to extreme thermal conditions requiring the use of tip cooling. If the coolant jet directed into the blade tip gap cannot counter the leakage flow, it will simply add up to the pressure losses due to this leakage flow....
Modeling and simulation of oil leakage in radial lip seals
Yıldız, Meltem; Akkök, Metin; Department of Mechanical Engineering (2010)
Radial lip seals are used to prevent leakage between machine elements in many industrial applications. During operation, fluid film between seal lip and shaft surface generates a pressure distribution on the lip which is elastically deformed due to hydrodynamic pressure. Surface roughness parameters in terms of moments of height profile distribution (rms roughness, skewness and kurtosis) affect the rate of oil leakage. A computer program is developed for elastohydrodynamic analysis of radial lip seals. Both...
EFFECT OF TURBINE BLADE TIP COOLING CONFIGURATION ON TIP LEAKAGE FLOW AND HEAT TRANSFER
Kahveci, Harika Senem; Sakaoğlu, Sergen (2019-06-17)
The pressure difference between suction and pressure sides of a turbine blade leads to the so-called phenomenon, the tip leakage flow, which most adversely affects the first-stage high- pressure (HP) turbine blade tip aerodynamics. In modern gas turbines, HP turbine blade tips are also exposed to extreme thermal conditions requiring the use of tip cooling. If the coolant jet directed into the blade tip gap cannot counter the leakage flow, it will simply add up to the pressure losses due to this leak...
Analysis of regenerative cooling ın liquid propellant rocket engines
Boysan, Mustafa Emre; Ulaş, Abdullah; Department of Mechanical Engineering (2008)
High combustion temperatures and long operation durations require the use of cooling techniques in liquid propellant rocket engines. For high-pressure and high-thrust rocket engines, regenerative cooling is the most preferred cooling method. In regenerative cooling, a coolant flows through passages formed either by constructing the chamber liner from tubes or by milling channels in a solid liner. Traditionally, approximately square cross sectional channels have been used. However, recent studies have shown ...
Assessment of hand-type hammer drill bits under percussive loading
Demir, Osman Koray; Çalışkan, Mehmet; Department of Mechanical Engineering (2007)
The task of a drill bit in percussive drilling is to transport the initial kinetic energy of the hammer to the workpiece in terms of stress waves. The efficiency of this transportation and the stresses that the drill bit is exposed to during the process is dependent on the nature of the stress waves. In hand-type hammer drilling, changing dimensions of the bit means changing conditions for the propagation and interaction of the stress waves. In this study, using finite element method, wave propagation and i...
Citation Formats
S. Sakaoglu and H. S. Kahveci, “Effect of Turbine Blade Tip Cooling Configuration on Tip Leakage Flow and Heat Transfer,” JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, pp. 0–0, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40180.