Estimation of Ground Reaction Forces Using Low-Cost Instrumented Forearm Crutches

2018-06-01
Instrumented crutches are useful for many rehabilitation tasks, including monitoring the correctness of crutch use, analyzing gait properties for patients with lower-limb impairments, as well as providing sensory data for controlling lower-body robotic orthoses. In this paper, we describe the design and analysis of an instrumented crutch system equipped with low-cost accelerometer and pressure sensors to estimate all components of the ground reaction force (GRF), providing a well-defined and physically meaningful sensory output for practical applications. We propose an angle-dependent quadratic model to map pressure and inclination data to force components, which we identify using least-squares methods. Through systematic characterization experiments, we first show that our model can predict GRF vectors with less than 7% rms errors in all axes for fixed crutch angles used for training. Subsequently, we generalize the model to crutch angles other than those used for training, showing that rms estimation errors remain below 7% for all axes. Finally, we assess measurement accuracy and performance under dynamic loading conditions with time-varying crutch angles, showing that errors still remain below 8% under realistic conditions.
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

Suggestions

Measurement of AC magnetic field distribution using magnetic resonance imaging
Ider, YZ; Muftuler, LT (1997-10-01)
Electric currents are applied to body in numerous applications in medicine such as electrical impedance tomography, cardiac defibrillation, electrocautery, and physiotherapy. If the magnetic field within a region is measured, the currents generating these fields can be calculated using the curl operator. In this study, magnetic fields generated within a phantom by currents passing through an external wire is measured using a magnetic resonance imaging (MRI) system, A pulse sequence that is originally design...
Identification of a vertical hopping robot model via harmonic transfer functions
Uyanik, Ismail; Ankaralı, Mustafa Mert; Cowan, Noah J.; Saranlı, Uluç; Morgul, Omer (2016-05-01)
A common approach to understanding and controlling robotic legged locomotion is the construction and analysis of simplified mathematical models that capture essential features of locomotor behaviours. However, the representational power of such simple mathematical models is inevitably limited due to the non-linear and complex nature of biological locomotor systems. Attempting to identify and explicitly incorporate key non-linearities into the model is challenging, increases complexity, and decreases the ana...
Realization of human gait in virtual fluid environment on a robotic gait trainer for therapeutic purposes
Ertop, Tayfun Efe; Yuksel, Tolga; Konukseven, Erhan İlhan (Elsevier BV, 2018-7)
Patients with disorders such as spinal cord injury, cerebral palsy and stroke can perform full gait when assisted, which progressively helps them regain the ability to walk. A very common way to create assistive effects is aquatic therapy. Aquatic environment also creates resistive effects desired for strength building. In this study, realization of a virtual fluid environment on a robotic gait trainer is presented as an alternative method. A model was created to determine torques and forces acting on the h...
Numerical aspects of anisotropic failure in soft biological tissues favor energy-based criteria: A rate-dependent anisotropic crack phase-field model
Gueltekin, Osman; Dal, Hüsnü; Holzapfel, Gerhard A. (2018-04-01)
A deeper understanding to predict fracture in soft biological tissues is of crucial importance to better guide and improve medical monitoring, planning of surgical interventions and risk assessment of diseases such as aortic dissection, aneurysms, atherosclerosis and tears in tendons and ligaments. In our previous contribution (Gultekin et al., 2016) we have addressed the rupture of aortic tissue by applying a holistic geometrical approach to fracture, namely the crack phase-field approach emanating from va...
Simulation of Transmembrane Potential Propagation in Normal and Ischemic Tissue Using Aliev Panfilov Model
Seyedebrahimi, Mehdi; Serinağaoğlu Doğrusöz, Yeşim (2016-11-05)
Simulation of Transmembrane Potential Propagation in Normal and Ischemic Tissue Using Aliev Panfilov Model
Citation Formats
Ç. Seylan and U. Saranlı, “Estimation of Ground Reaction Forces Using Low-Cost Instrumented Forearm Crutches,” IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, pp. 1308–1316, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40183.